llama factory lora 微调 qwen2.5 7B Instruct模型

news2024/11/16 10:24:48

项目背景 甲方提供一台三卡4080显卡 需要进行qwen2.5 7b Instruct模型进行微调。以下为整体设计。
要使用 LLaMA-FactoryQwen2.5 7B Instruct模型 进行 LoRA(Low-Rank Adapters)微调,流程与之前提到的 Qwen2 7B Instruct 模型类似。LoRA 微调是一种高效的微调方法,通过低秩适配器层来调整预训练模型的权重,而不是全量训练整个模型。

环境准备

确保你已经安装了必要的依赖,包括 LLaMA-FactoryDeepSpeedtransformers 库。如果尚未安装,可以使用以下命令安装:

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"

如果使用量化 gptq 需要安装以下环境

pip install auto_gptq optimum

如果使用量化 awq 需要安装以下环境

pip install autoawq

获取 Qwen2.5 7B Instruct 模型 权重

确保你已经获取了 Qwen2.5 7B Instruct 模型 的预训练权重。如果没有,你可以从 Hugging Face 或其他平台上下载该模型,或者根据需要联系模型发布者获取相应的模型文件。这里采用魔搭社区下载qwen2.5 7b Instruct模型。

原模型

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen2.5-7B-Instruct')

int 8 量化模型

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen2.5-7B-Instruct-GPTQ-Int8')

int 4 量化模型

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen2.5-7B-Instruct-AWQ')

3配置 LoRA 微调

LLaMA-Factory 中,LoRA 微调通常需要对模型进行一些配置,以下是实现 LoRA 微调的关键步骤:

编辑llama factory训练参数

新建llama factory 训练配置文件

examples/train_lora/qwen2.5_7b_lora_sft.yaml

加载 Qwen2.5 7B Instruct 模型 和 数据集,并设置 LoRA 训练范围。

### model
model_name_or_path: Qwen/Qwen2.5-7B-Instruct-AWQ

### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all

### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16

### output
output_dir: saves/qwen2.5-7b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true

### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000

### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

这段配置文件主要用于 LoRA 微调 Qwen2.5-7B-Instruct-AWQ 模型,并且进行了具体的参数设置。每个部分都涉及模型、方法、数据集、输出、训练、评估等配置。以下是对每个部分的详细解读:

模型配置 (model)

model_name_or_path: Qwen/Qwen2.5-7B-Instruct-AWQ
  • model_name_or_path:指定了要微调的预训练模型的名称或路径。在这里,它指向了 Qwen2.5-7B-Instruct-AWQ 模型。你可以通过指定这个模型的路径或者从 Hugging Face 之类的模型库中加载该模型。

方法配置 (method)

stage: sft
do_train: true
finetuning_type: lora
lora_target: all
  • stage: sft:表示当前的训练阶段是 SFT(Supervised Fine-Tuning) 阶段,意味着模型将在特定的标注数据集上进行监督学习。
  • do_train: true:表示进行训练。
  • finetuning_type: lora:指定了微调的类型是 LoRA(Low-Rank Adapter),意味着通过低秩适配器层来进行微调,而不是全量训练整个模型。
  • lora_target: all:表示在模型的所有层上应用 LoRA 微调。你也可以选择特定的层,如 attentionffn,但这里设置为 all,意味着所有的层都会应用 LoRA。

数据集配置 (dataset)

dataset: identity,alpaca_en_demo
template: qwen
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
  • dataset: identity,alpaca_en_demo:指定了要使用的数据集,这里列出了两个数据集:identityalpaca_en_demo。你需要确保这两个数据集已经准备好并且路径正确。identity 可能是一个自定义数据集,alpaca_en_demo 是一个英文数据集。
  • template: qwen:指定了数据集的模板,这个模板通常用于数据预处理过程,它可能包括对文本的格式化或特殊的标注。
  • cutoff_len: 2048:指定了最大输入长度(单位为token)。如果输入文本超过这个长度,它将会被截断。这个长度与模型的最大接受长度有关,通常需要根据具体模型的设置调整。
  • max_samples: 1000:指定了使用的数据集样本的最大数量,这里设置为1000,意味着将只使用最多1000个样本进行训练。
  • overwrite_cache: true:如果缓存目录存在,则覆盖缓存。这个选项通常用于确保每次训练时使用最新的数据。
  • preprocessing_num_workers: 16:指定了数据预处理时使用的工作线程数,16个线程可以加速数据加载和预处理过程。

输出配置 (output)

output_dir: saves/qwen2-7b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
  • output_dir: saves/qwen2-7b/lora/sft:指定了训练过程中保存模型和日志的输出目录。在此路径下,将保存微调后的模型、检查点等文件。
  • logging_steps: 10:每10步记录一次日志。
  • save_steps: 500:每500步保存一次模型检查点。这样你可以在训练过程中定期保存模型的状态,避免意外中断时丢失训练进度。
  • plot_loss: true:在训练过程中,启用损失值可视化(例如通过TensorBoard或其他工具)。这有助于监控训练过程中模型的表现。
  • overwrite_output_dir: true:如果输出目录已存在,则覆盖它。确保训练过程中不会因为目录存在而出现错误。

训练配置 (train)

per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
  • per_device_train_batch_size: 1:每个设备的训练批次大小设置为1。这通常与GPU的显存大小相关,如果显存较小,批次大小可以设置为1。
  • gradient_accumulation_steps: 2:梯度累积的步数。如果批次大小设置为1,但需要更多的梯度累积,可以通过此设置实现。
  • learning_rate: 1.0e-4:设置学习率为 0.0001,这是训练时调整权重的步长。
  • num_train_epochs: 3.0:训练的总周期数,这里设置为3轮。通常需要根据训练集大小和收敛速度来调整这个值。
  • lr_scheduler_type: cosine:学习率调度器类型,使用 cosine 调度策略,通常能在训练后期逐渐减小学习率。
  • warmup_ratio: 0.1:学习率的预热比例,设置为 0.1 表示前10%的训练步骤中,学习率将逐步增加到初始值。
  • bf16: true:启用 bfloat16 精度进行训练,以减少显存消耗并加速训练。这通常需要支持 bfloat16 的硬件(如TPU)。
  • ddp_timeout: 180000000:设置 Distributed Data Parallel(DDP) 模式下的超时。这个值通常是为了防止分布式训练过程中发生超时错误。

评估配置 (eval)

val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
  • val_size: 0.1:指定验证集的大小为训练数据的 10%,即从训练数据集中划分出10%作为验证集。
  • per_device_eval_batch_size: 1:评估时每个设备的批次大小为1。
  • eval_strategy: steps:评估策略设置为按步数评估,即每训练一定步数后进行评估。
  • eval_steps: 500:每500步进行一次评估。

微调过程

配置好训练参数和数据集后,你可以开始微调模型:

llamafactory-cli train examples/train_lora/qwen2.5_7b_lora_sft.yaml

原生显存占用

在这里插入图片描述

int 8 显存占用

| NVIDIA-SMI 550.90.07              Driver Version: 550.90.07      CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA vGPU-32GB               On  |   00000000:31:00.0 Off |                  N/A |
| 30%   40C    P2            168W /  320W |   16894MiB /  32760MiB |    100%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA vGPU-32GB               On  |   00000000:65:00.0 Off |                  N/A |
| 30%   40C    P2            182W /  320W |   16892MiB /  32760MiB |    100%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|

int 4 显存占用

在这里插入图片描述

根据测试环境显存占用预估 int8 与 int4量化可以在3卡4080环境中进行qwen2.5 7B Instruct 模型的训练任务

小结

通过以上步骤,你可以使用 LoRA 方法对 Qwen2.5 7B Instruct 模型 进行高效的微调。使用 LoRA 可以显著减少训练过程中所需的计算资源和存储需求,同时依然能够获得出色的微调效果。确保在训练过程中使用合适的数据集,并根据实际需要调整 LoRA 的参数(如秩 rlora_alpha)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2241440.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

机器学习day2-特征工程

四.特征工程 1.概念 一般使用pandas来进行数据清洗和数据处理、使用sklearn来进行特征工程 将任意数据(文本或图像等)转换为数字特征,对特征进行相关的处理 步骤:1.特征提取;2.无量纲化(预处理&#xf…

Llama架构及代码详解

Llama的框架图如图: 源码中含有大量分布式训练相关的代码,读起来比较晦涩难懂,所以我们对llama自顶向下进行了解析及复现,我们对其划分成三层,分别是顶层、中层、和底层,如下: Llama的整体组成…

stm32在linux环境下的开发与调试

环境安装 注:文末提供一键脚本 下载安装stm32cubeclt 下载地址为:https://www.st.com/en/development-tools/stm32cubeclt.html 选择 linux版本下载安装 安装好后默认在家目录st下 > $ ls ~/st/stm32cubeclt_1.16.0 …

第T7周:Tensorflow实现咖啡豆识别

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 目标 具体实现 (一)环境 语言环境:Python 3.10 编 译 器: PyCharm 框 架: (二)具体步骤 1. 使…

亲测有效:Maven3.8.1使用Tomcat8插件启动项目

我本地maven的settings.xml文件中的配置&#xff1a; <mirror><id>aliyunmaven</id><mirrorOf>central</mirrorOf><name>阿里云公共仓库</name><url>https://maven.aliyun.com/repository/public</url> </mirror>…

LLM - 使用 LLaMA-Factory 微调大模型 Qwen2-VL SFT(LoRA) 图像数据集 教程 (2)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/143725947 免责声明&#xff1a;本文来源于个人知识与公开资料&#xff0c;仅用于学术交流&#xff0c;欢迎讨论&#xff0c;不支持转载。 LLaMA-…

神经网络与Transformer详解

一、模型就是一个数学公式 模型可以描述为:给定一组输入数据,经过一系列数学公式计算后,输出n个概率,分别代表该用户对话属于某分类的概率。 图中 a, b 就是模型的参数,a决定斜率,b决定截距。 二、神经网络的公式结构 举例:MNIST包含了70,000张手写数字的图像,其中…

鲸鱼机器人和乐高机器人的比较

鲸鱼机器人和乐高机器人各有其独特的优势和特点&#xff0c;家长在选择时可以根据孩子的年龄、兴趣、经济能力等因素进行综合考虑&#xff0c;选择最适合孩子的教育机器人产品。 优势 鲸鱼机器人 1&#xff09;价格亲民&#xff1a;鲸鱼机器人的产品价格相对乐高更为亲民&…

Flink Source 详解

Flink Source 详解 原文 flip-27 FLIP-27 介绍了新版本Source 接口定义及架构 相比于SourceFunction&#xff0c;新版本的Source更具灵活性&#xff0c;原因是将“splits数据获取”与真“正数据获取”逻辑进行了分离 重要部件 Source 作为工厂类&#xff0c;会创建以下两…

路漫漫其修远兮,吾将上下而求索---第一次使用github的过程记录和个人感受

文章目录 1.仓库位置2.新建仓库3.配置仓库4.克隆和上传5.推荐文章和我的感受 1.仓库位置 这个仓库的位置就是在我们的这个个人主页的右上角&#xff1b;如果是第一次注册账号的话&#xff0c;这个主页里面肯定是不存在仓库的&#xff0c;需要我们自己手动的进行创建&#xff1…

npm list -g --depth=0(用来列出全局安装的所有 npm 软件包而不显示它们的依赖项)

您提供的命令 npm list -g --depth0 是在 Node Package Manager (npm) 的上下文中使用的&#xff0c;用来列出全局安装的所有 npm 软件包而不显示它们的依赖项。 这是它的运作方式&#xff1a; npm list -g --depth0-g: 指定列表应包括全局安装的软件包。--depth0: 限制树形结…

tdengine学习笔记

官方文档&#xff1a;用 Docker 快速体验 TDengine | TDengine 文档 | 涛思数据 整体架构 TDENGINE是分布式&#xff0c;高可靠&#xff0c;支持水平扩展的架构设计 TDengine分布式架构的逻辑结构图如下 一个完整的 TDengine 系统是运行在一到多个物理节点上的&#xff0c;包含…

K8S单节点部署及集群部署

1.Minikube搭建单节点K8S 前置条件&#xff1a;安装docker&#xff0c;注意版本兼容问题 # 配置docker源 wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo -O /etc/yum.repos.d/docker-ce.repo# 安装docker环境依赖 yum install -y yum-utils device-m…

以往运维岗本人面试真题分享

以下是本人面试运维岗的一些面试经历&#xff0c;在此做个记录分享 目录 TCP/IP三次握手 IPtables IPtables四表五链都是什么&#xff1f; nat端口如何做&#xff1f; 开放本机的80端口该如何做&#xff1f; 如何在单用户模式下引导Centos&#xff1f; nginx轮询模式都有…

STM32 串口输出调试信息

软硬件信息 CubeMX version 6.12.1Keil uVision V5.41.0.0 注意 串口有多种&#xff1a; TTL232485 串口的相关知识&#xff1a; 01-【HAL库】STM32实现串口打印&#xff08;printf方式) &#xff0c; 内含 TTL 和 232 区别。 我把 232 串口连进 STM32 串口助手收到的信息…

Python 三种方式实现自动化任务

在这篇文章中&#xff0c;我们将介绍一些用Python实现机器人过程自动化的包。机器人流程自动化&#xff08;Robotic process automation&#xff0c;简称RPA&#xff09;是指将鼠标点击和键盘按压自动化的过程&#xff0c;即模拟人类用户的操作。RPA用于各种应用程序&#xff0…

Android ART知多少?

Android 虚拟机 ART&#xff08;Android Runtime&#xff09;是 Android 平台上的应用程序运行时环境&#xff0c;用于执行应用程序的字节码。ART 自 Android 5.0&#xff08;Lollipop&#xff09;开始取代了 Dalvik&#xff0c;成为 Android 的默认运行时环境。本文将从以下几…

Vulnhub靶场 Billu_b0x 练习

目录 0x00 准备0x01 主机信息收集0x02 站点信息收集0x03 漏洞查找与利用1. 文件包含2. SQL注入3. 文件上传4. 反弹shell5. 提权&#xff08;思路1&#xff1a;ssh&#xff09;6. 提权&#xff08;思路2&#xff1a;内核&#xff09;7. 补充 0x04 总结 0x00 准备 下载链接&#…

软间隔支持向量机支持向量的情况以及点的各种情况

软间隔支持向量 ​ 这一节我们要回答的问题是&#xff1f;如何判断一个点是软间隔支持向量机中的支持向量&#xff0c;在硬间隔支持向量机中&#xff0c;支持向量只需要满足一个等式&#xff1a; y i ( w T x i b ) − 1 0 y_i(w^Tx_i b) -1 0 yi​(wTxi​b)−10 ​ 在软间…

PCA 原理推导

针对高维数据的降维问题&#xff0c;PCA 的基本思路如下&#xff1a;首先将需要降维的数据的各个变量标准化&#xff08;规范化&#xff09;为均值为 0&#xff0c;方差为 1 的数据集&#xff0c;然后对标准化后的数据进行正交变换&#xff0c;将原来的数据转换为若干个线性无关…