基于yolov8、yolov5的鸟类分类系统(含UI界面、训练好的模型、Python代码、数据集)

news2024/11/16 7:19:44

项目介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8yolov8 + SE注意力机制yolov5yolov5 + SE注意力机制直接提供最少两个训练好的模型。模型十分重要,因为有些同学的电脑没有 GPU,无法自行训练。

数据集:
    网上下载的数据集,格式都已转好,可直接使用。

界面:
    PyQt5

以上是本篇博客的简单说明,添加注意力机制可作为模型的创新点

在这里插入图片描述


摘要鸟类分类系统在现代生态研究和生物多样性监测中具有重要意义,不仅有助于提高物种识别的效率,还能在鸟类保护和栖息地管理中发挥关键作用。本文介绍了基于YOLOv8深度学习框架的一个鸟类分类模型,该模型使用了大量不同种类的鸟类图像进行训练,能够精准识别不同光照、角度和背景下的鸟类种类。我们还开发了一款带有UI界面的鸟类分类系统,支持实时检测鸟类的种类,并通过图形界面直观地展示分类结果。系统采用PythonPyQt5开发,支持图片、视频及摄像头输入的识别,并能保存分类结果以供后续分析。
此外,本文附带了完整的Python代码和详细的使用指南,方便读者快速上手,进行鸟类分类系统的搭建与测试。完整的代码资源及使用方法请见文章末尾。

前言

   鸟类分类技术在生态研究、物种保护和生物多样性监测等领域中具有重要意义,能够提高物种识别的效率并确保生态环境的健康。在现代生态监测中,快速且精准地分类鸟类,能够帮助研究人员和保护工作者更好地识别和保护不同种类的鸟类,从而减少物种灭绝风险,优化保护资源的分配,特别是在自动化监测系统中,精准的分类是其高效运行的基础。同时,鸟类分类系统还能为生态保护提供数据支持,实现更好的物种监控和保护管理。

   鸟类分类技术已经在多个生态监测场景中得到广泛应用,如鸟类监测、栖息地保护、生态研究、物种分布预测等。依赖高效的分类系统,研究人员和保护组织可以实时监测鸟类种类,并根据分类结果调整保护策略,从而提高整体保护效率并确保鸟类种群的健康和多样性。

   在现代智能生态管理环境中,鸟类分类系统可以与其他智能管理系统结合使用,如自动化监控设备、生态数据平台和物种监测系统,形成完整的智能生态解决方案,帮助研究人员和保护组织更好地掌握鸟类种群状况。在大规模生态监测和复杂环境中,系统能够快速识别和分类多种鸟类种类,为科学决策提供精准的数据支持。

   本文通过收集与鸟类分类相关的数据和图像,博主利用YOLOv8、YOLOv5等目标检测技术,结合Python与PyQt5,开发出了一款界面简洁的鸟类分类系统。该系统支持图片、视频及摄像头输入的识别,并能够保存分类结果,为用户提供直观便捷的检测体验。

目录

  • 项目介绍
  • 前言
  • 功能展示:
  • 🌟 一、环境安装
  • 🌟 二、数据集介绍
  • 🌟 三、深度学习算法介绍
    • 1. yolov8相关介绍
    • 2. yolov5相关介绍
  • 🌟 四、模型训练步骤
  • 🌟 五、模型评估步骤
  • 🌟 六、训练结果
  • 结束语 🌟 🌟🌟🌟

功能展示:

部分核心功能如下:

  • 功能1: 支持单张图片识别
  • 功能2: 支持遍历文件夹识别
  • 功能3: 支持识别视频文件
  • 功能4: 支持摄像头识别
  • 功能5: 支持结果文件导出(xls格式)
  • 功能6: 支持切换检测到的目标查看

更多的其他功能以及界面样式可以通过下方视频演示查看。

基于深度学习的鸟类分类检测系统(yolov8)


🌟 一、环境安装

文档中有详细的环境安装指南,包括 Python、PyCharm、CUDA、Torch 等库的安装步骤,所有版本均已适配。你可以根据文档或视频教程一步步完成安装。

经过三年多的经验积累,我整理了在帮助他人安装环境过程中常见的问题和解决方法,并汇总到这份文档中。无论你是使用 GPU 版还是 CPU 版,都能找到相关的安装细节和说明。文档会定期更新,以确保最新的环境配置和优化,供大家参考。

文档截图如下:

在这里插入图片描述


🌟 二、数据集介绍

数据集已经分好 train、val、test文件夹,也提供转好的yolo格式的标注文件,可以直接使用。
11种鸟类,600张数据集。这个数据集本来有200个种类,因为太多了训练效果就会降低,所以就选了11个种类。

在这里插入图片描述

在这里插入图片描述


🌟 三、深度学习算法介绍

本系统集成了多个不同的算法版本和界面版本,以下是对这些版本的概述:

算法版本方面,系统提供了多种深度学习算法和传统图像处理技术,用户可以选择最合适的算法进行任务处理。此外,各算法版本经过严格的测试和优化,以提供更高的准确率和效率。

界面版本方面,系统设计了多种用户界面风格,可以选择简约、直观的界面,快速上手进行操作;也可以选择功能丰富的专业界面,满足复杂任务的需求。界面设计注重用户体验,确保用户在操作过程中能够方便地访问各种功能。

此外,系统还支持实时更新和扩展,可以根随时添加新的算法模块或界面选项。这种灵活性不仅提高了系统的适用性,也为未来的技术发展预留了空间。

总之,本系统通过多个算法和界面版本的组合,提供了丰富的选择和强大的功能。

下面是对包含到的算法的大概介绍:

1. yolov8相关介绍

YOLOv8 是当前深度学习领域内的一个SOTA(State-Of-The-Art)模型,凭借其前代版本的技术积累,再次引领了目标检测算法的发展方向。与其前辈不同,YOLOv8在模型结构和计算方式上都做了创新性调整,旨在实现更高效的计算和更灵活的应用场景适应能力。全新的骨干网络设计,结合Anchor-Free 检测头,让模型在面对不同输入尺寸、不同目标尺度时的表现更加出色,极大提升了性能和准确性

此外,YOLOv8 的另一个重要进步在于它采用了全新的损失函数,使得训练过程更加稳定和高效。无论是在传统的CPU平台上运行,还是在更强大的GPU平台上进行加速,YOLOv8 都能够适应不同硬件资源的场景,确保在各种场合下保持高效的推理速度精确的检测能力

不过,值得注意的是,ultralytics 这一开发团队并没有直接将其开源库命名为 YOLOv8,而是采用了ultralytics的品牌名来命名整个项目。这并非单纯的命名策略,而是反映了其定位的重大变化。ultralytics 将这个库不仅视为一个算法框架,而非仅仅一个 YOLO 版本的延续。其设计目标之一是打造一个能够适应不同任务的算法平台,无论是目标检测、分类、分割,还是姿态估计,都能够在这个框架中被高效地支持。

这也意味着,未来的ultralytics 开源库将不仅限于 YOLO 系列,它的可扩展性为用户提供了更大的可能性。无论是使用非 YOLO 系列模型,还是面对不同应用领域的特定需求,ultralytics都提供了灵活且高效的解决方案

总的来说,ultralytics 开源库 的优势可以归纳为以下几个要点:

  • 融合当前最前沿的深度学习技术,让用户可以轻松实现复杂的计算任务。

  • 具有极高的扩展性,未来将不仅支持 YOLO 系列,还会支持更多非 YOLO 的算法,适用于广泛的任务场景。

如此一来,ultralytics 不仅能够帮助开发者在算法研究工程应用上取得突破,更能推动未来智能视觉领域的进一步发展。

在这里插入图片描述

网络结构如下:
在这里插入图片描述

2. yolov5相关介绍

YOLOV5有YOLOv5n,YOLOv5s,YOLOv5m,YOLOV5l、YOLO5x五个版本。这个模型的结构基本一样,不同的是deth_multiole模型深度和width_multiole模型宽度这两个参数。就和我们买衣服的尺码大小排序一样,YOLOV5n网络是YOLOV5系列中深度最小,特征图的宽度最小的网络。其他的三种都是在此基础上不断加深,不断加宽。不过最常用的一般都是yolov5s模型。
在这里插入图片描述

  本系统采用了基于深度学习的目标检测算法YOLOv5,该算法是YOLO系列算法的较新版本,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题。此外,YOLOv5还引入了一种称为SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。

  在YOLOv5中,首先将输入图像通过骨干网络进行特征提取,得到一系列特征图。然后,通过对这些特征图进行处理,将其转化为一组检测框和相应的类别概率分数,即每个检测框所属的物体类别以及该物体的置信度。YOLOv5中的特征提取网络使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。

在这里插入图片描述

  
YOLOv5中,每个检测框通过其左上角坐标(x, y)、宽度(w)、高度(h)以及置信度confidence)来表示。此外,YOLOv5对于每个检测框还会预测C个类别的概率得分,每个类别的概率得分总和为1。这意味着每个检测框最终可以被表示为一个维度为(C+5)的向量,包括类别概率、位置和置信度信息。

在训练过程中,YOLOv5使用了交叉熵损失函数来优化模型,该损失函数由定位损失置信度损失分类损失三个部分组成。YOLOv5还采用了Focal LossIoU Loss等优化方法,以缓解正负样本不平衡目标尺寸变化等问题。这些优化不仅提高了模型的准确性,还改善了在不同尺寸目标下的表现。

从网络结构来看,YOLOv5分为四个主要部分:Input(输入)、Backbone(骨干网络)、Neck(颈部结构)和Prediction(预测)。其中,Input部分负责将数据引入网络,采用了Mosaic数据增强技术,能够通过随机裁剪和拼接输入图片,进一步提升网络的泛化能力。

Backbone部分是YOLOv5提取图像特征的关键模块,其特征提取能力直接影响了整个模型的性能表现。相比前代YOLOv4,YOLOv5在Backbone中引入了Focus结构。Focus结构通过切片操作将图片的宽度(W)高度(H)信息转移到通道空间中,从而实现了2倍的下采样操作,同时保证了不丢失关键信息。


🌟 四、模型训练步骤

  1. 使用pycharm打开代码,找到train.py打开,示例截图如下:
    在这里插入图片描述

  2. 修改 model_yaml 的值,根据自己的实际情况修改,想要训练 yolov8s模型 就 修改为 model_yaml = yaml_yolov8s, 训练 添加SE注意力机制的模型就修改为 model_yaml = yaml_yolov8_SE

  3. 修改data_path 数据集路径,根据自己的数据集位置修改。我提供的数据集都是在traindata文件夹下,路径设置到这一级即可。
    示例:

    data_path = r'D:\lg\BaiduSyncdisk\project\person_code\project_self\19_corn_disease\data\traindata'
    
  4. 修改 model.train()中的参数,按照自己的需求和电脑硬件的情况更改

    # 文档中对参数有详细的说明
    model.train(data=data_path,  # 数据集路径
                imgsz=300,  # 训练图片大小
                epochs=200,  # 训练的轮次
                batch=2,  # 训练batch
                workers=0,  # 加载数据线程数
                device='0',  # 使用显卡
                optimizer='SGD',  # 优化器
                project='runs/train',  # 模型保存路径
                name=name,  # 模型保存命名
                )
    
  5. 修改完后,执行 train.py , 打开 train.py ,右键执行。
    在这里插入图片描述

  6. 出现如下类似的界面代表开始训练了
    在这里插入图片描述

  7. 训练完后的模型保存在runs/train文件夹下
    在这里插入图片描述


🌟 五、模型评估步骤

  1. 打开val.py文件,如下图所示:
    在这里插入图片描述

  2. 修改 model_pt 的值,是自己想要评估的模型路径

  3. 修改 data_path 数据集路径的值,自己的数据集路径,我提供的数据集都是在traindata文件夹下,路径设置到这一级即可。

  4. 修改 model.val() 中的参数,按照自己的需求和电脑硬件的情况更改

    model.val(data=data_path,           # 数据集路径
              imgsz=300,                # 图片大小,要和训练时一样
              batch=4,                  # batch
              workers=0,                # 加载数据线程数
              conf=0.001,               # 设置检测的最小置信度阈值。置信度低于此阈值的检测将被丢弃。
              iou=0.6,                  # 设置非最大抑制 (NMS) 的交叉重叠 (IoU) 阈值。有助于减少重复检测。
              device='0',               # 使用显卡
              project='runs/val',       # 保存路径
              name='exp',               # 保存命名
              )
    
  5. 修改完后,即可执行程序,出现如下截图,代表成功
    在这里插入图片描述

  6. 评估后的文件全部保存在在 runs/val/exp... 文件夹下
    在这里插入图片描述

  7. 具体的准确度等指标可以在在 终端上看到
    在这里插入图片描述


🌟 六、训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述

   如果大家对于上面生成的这些内容(confusion_matrix.png、results.png等)不清楚是什么意思,可以在我的文档中查看这些指标的具体含义,示例截图如下:

在这里插入图片描述


结束语 🌟 🌟🌟🌟

   下面图片是对每个文件夹作用的介绍:(纯粹是秀一秀 俺的 代码结构是否清晰, 注释是否详细,如果大家觉得有更好的方法,可以下方留言,一定再精进一下。)

在这里插入图片描述

其实用yolo算法做系统非常的简单,但是博客文字有限,如果有介绍不明白的地方,也可以看一下下面的视频,也许会更容易理解。

视频就是记录自己如何进行环境安装、以及如何进行模型训练和模型评估的, 具体视频列表可以看下方图片箭头位置。当然如果自己不做这个项目,做其他的也可以参考一下,毕竟方法都是通用的。
在这里插入图片描述

项目完整文件下载请见演示与介绍视频的视频简介部分进行获取➷➷➷

演示与介绍视频: 【基于深度学习的鸟类分类检测系统(yolov8)】

由于博主的能力有限,文中提到的方法虽经过实验验证,但难免存在一些不足之处。为不断提升内容的质量与准确性,欢迎您指出任何错误和疏漏。这不仅将帮助我在下次更新时更加完善和严谨,也能让其他读者受益。您的反馈对我至关重要,能够推动我进一步完善相关内容。

此外,如果您有更优秀的实现方案或独到的见解,也非常欢迎分享。这将为大家提供更多思路与选择,促进我们共同的成长与进步。期待您的宝贵建议与经验交流,非常感谢您的支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2241353.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何保证MySQL与Redis缓存的数据一致性?

文章目录 一、引言二、场景来源三、高并发解决方案1. 先更新缓存,再更新数据库2. 先更新数据库,再更新缓存3. 先删除缓存,再更新数据库4. 先更新数据库,再删除缓存小结 四、拓展方案1. 分布式锁与分布式事务2. 消息队列3. 监听bin…

Chromium 中sqlite数据库操作演示c++

本文主要演示sqlite数据库 增删改查创建数据库以及数据库表的基本操作,仅供学习参考。 一、sqlite数据库操作类封装: sql\database.h sql\database.cc // Copyright 2012 The Chromium Authors // Use of this source code is governed by a BSD-sty…

pycharm分支提交操作

一、Pycharm拉取Git远程仓库代码 1、点击VCS > Get from Version Control 2、输入git的url,选择自己的项目路径 3、点击Clone,就拉取成功了 默认签出分支为main 选择develop签出即可进行开发工作 二、创建分支(非必要可以不使用&#xf…

河道无人机雷达测流监测系统由哪几部分组成?

在现代水利管理中,河道无人机雷达监测系统正逐渐成为一种重要的工具,为河道的安全和管理提供了强大的技术支持。那么,这个先进的监测系统究竟由哪几部分组成呢? 河道无人机雷达监测系统工作原理 雷达传感器通过发射电磁波或激光束…

使用pycrawlers下载huggingface报错list index out of range问题解决

使用pycrawlers下载huggingface失败 错误:list index out of range 问题描述:当批量下载整个huggingface仓库的时候会报错,并且没有报错提示 分析:应该是哪个链接请求结果不存在数据 结果:当下载仓库存在文件夹下面只…

清华大学提出基于ESKF的松耦合里程计RINO:一种具有非迭代估计的精确、稳健的雷达惯性里程计

Abstract 精确的定位和建图对于实现自动驾驶车辆的自主导航至关重要。然而,当GNSS信号失效或在极端天气条件(例如雾、雨和雪)下,车体运动估计仍然面临重大挑战。近年来,扫描雷达因其较强的穿透能力成为一种有效的解决…

微信小程序之路由跳转传数据及接收

跳转并传id或者对象 1.home/index.wxml <!--点击goto方法 将spu_id传过去--> <view class"item" bind:tap"goto" data-id"{{item.spu_id}}"> 结果: 2.home/index.js goto(event){// 路由跳转页面,并把id传传过去//获取商品idlet i…

tensorflow案例6--基于VGG16的猫狗识别(准确率99.8%+),以及tqdm、train_on_batch的简介

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 前言 本次还是学习API和如何搭建神经网络为主&#xff0c;这一次用VGG16去对猫狗分类&#xff0c;效果还是很好的&#xff0c;达到了99.8% 文章目录 1、tqdm…

海康大华宇视视频平台EasyCVR私有化视频平台服务器选购主要参数有哪些?

在构建现代服务器和视频监控系统时&#xff0c;选择合适的硬件配置和关键技术是确保系统性能和稳定性的基础。服务器选购涉及到多个关键参数&#xff0c;这些参数直接影响到服务器的处理能力、数据存储、网络通信等多个方面。 同时&#xff0c;随着视频监控技术的发展&#xf…

Redisson的可重入锁

初始状态&#xff1a; 表示系统或资源在没有线程持有锁的情况下的状态&#xff0c;任何线程都可以尝试获取锁。 线程 1 获得锁&#xff1a; 线程 1 首次获取了锁并进入受保护的代码区域。 线程 1 再次请求锁&#xff1a; 在持有锁的情况下&#xff0c;线程 1 再次请求锁&a…

Java-01 深入浅出 MyBatis - MyBatis 概念 ORM映射关系 常见ORM 详细发展历史

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 大数据篇正在更新&#xff01;https://blog.csdn.net/w776341482/category_12713819.html 目前已经更新到了&#xff1a; MyBatis&#xff…

C语言第13节:指针(3)

1. 回调函数 回调函数的基本思想是&#xff0c;将函数指针作为参数传递给另一个函数&#xff0c;并在需要时通过这个函数指针调用对应的函数。这种方式允许一个函数对执行的内容进行控制&#xff0c;而不需要知道具体的实现细节。 回调函数在以下场景中尤为有用&#xff1a; …

Tensorflow基本概念

简介&#xff1a;本文从Graph讲到Session&#xff0c;同时讲解了tf.constant创建tensor的用法和variable需要初始化的知识点&#xff0c;可以给你打好一个学习Tensorflow的基础。本文都是基于TensorFlow1.14.0的版本下运行。 本专栏将会系统的讲解TensorFlow在1.14.0版本下的各…

【包教包会】CocosCreator3.x框架——带翻页特效的场景切换

一、效果演示 二、如何获取 1、https://gitee.com/szrpf/TurnPage 2 2、解压&#xff0c;导入cocos creator&#xff08;版本3.8.2&#xff09;&#xff0c;可以直接运行Demo演示 三、算法思路 1、单场景 页面预制体 通过loadScene来切换页面&#xff0c;无法实现页面特效…

【MySQL 保姆级教学】事务的自动提交和手动提交(重点)--上(13)

目录 1. 什么是事务&#xff1f;2. 事务的版本支持3. 事务提交的方式3.1 事务提交方式的分类3.2 演示的准备的工作3.2.1 创建表3.2.2 MySQL的服务端和客户端3.2.3 调低事务的隔离级别 4. 手动提交4.1 手动提交的命令说明4.2 示例一4.3 示例二4.4 示例三4.5 示例四 5. 自动提交5…

几何合理的分片段感知的3D分子生成 FragGen - 评测

FragGen 来源于 2024 年 3 月 25 日 预印本的文章&#xff0c;文章题目是 Deep Geometry Handling and Fragment-wise Molecular 3D Graph Generation&#xff0c; 作者是 Odin Zhang&#xff0c;侯廷军&#xff0c;浙江大学药学院。FragGen 是一个基于分子片段的 3D 分子生成模…

数据结构笔记(其八)--一般树的存储及其遍历

1.知识总览 一般的树会有多个孩子&#xff0c;所以存储结构也会与二叉树略有不同。 一般树的遍历。 2.双亲表示法 双亲表示法&#xff0c;也是父亲表示法&#xff0c;即每个节点中都存储了其父节点的地址信息。 特性&#xff1a;可以轻易地找到父节点&#xff0c;但寻找孩子节…

Linux系统Centos设置开机默认root用户

目录 一. 教程 二. 部分第三方工具配置也无效 一. 教程 使用 Linux 安装Centos系统的小伙伴大概都知道&#xff0c;我们进入系统后&#xff0c;通常都是自己设置的普通用户身份&#xff0c;而不是 root 超级管理员用户&#xff0c;导致我们在操作文件夹时往往爆出没有权限&am…

医院信息化与智能化系统(21)

医院信息化与智能化系统(21) 这里只描述对应过程&#xff0c;和可能遇到的问题及解决办法以及对应的参考链接&#xff0c;并不会直接每一步详细配置 如果你想通过文字描述或代码画流程图&#xff0c;可以试试PlantUML&#xff0c;告诉GPT你的文件结构&#xff0c;让他给你对应…

【论文阅读】利用SEM二维图像表征黏土矿物三维结构

导言 在油气储层研究中&#xff0c;黏土矿物对流体流动的影响需要在微观尺度上理解&#xff0c;但传统的二维SEM图像难以完整地表征三维孔隙结构。常规的三维成像技术如FIB-SEM&#xff08;聚焦离子束扫描电子显微镜&#xff09;虽然可以获取高精度的3D图像&#xff0c;但成本…