Day44 | 动态规划 :状态机DP 买卖股票的最佳时机IV买卖股票的最佳时机III

news2024/11/15 5:02:10

Day44 | 动态规划 :状态机DP 买卖股票的最佳时机IV&&买卖股票的最佳时机III&&309.买卖股票的最佳时机含冷冻期

动态规划应该如何学习?-CSDN博客

本次题解参考自灵神的做法,大家也多多支持灵神的题解

买卖股票的最佳时机【基础算法精讲 21】_哔哩哔哩_bilibili

希望读者在阅读之前先看完这篇博客

Day43 | 动态规划 :状态机DP 买卖股票的最佳时机&&买卖股票的最佳时机II-CSDN博客

动态规划学习:

1.思考回溯法(深度优先遍历)怎么写

注意要画树形结构图

2.转成记忆化搜索

看哪些地方是重复计算的,怎么用记忆化搜索给顶替掉这些重复计算

3.把记忆化搜索翻译成动态规划

基本就是1:1转换

文章目录

  • Day44 | 动态规划 :状态机DP 买卖股票的最佳时机IV&&买卖股票的最佳时机III&&309.买卖股票的最佳时机含冷冻期
    • 188.买卖股票的最佳时机IV
      • 思路分析(子问题):
      • 1.回溯 DFS
      • 2.记忆化搜索
      • 3.1:1翻译为动态规划
      • 4.滚动数组优化
    • 123.买卖股票的最佳时机III

188.买卖股票的最佳时机IV

188. 买卖股票的最佳时机 IV - 力扣(LeetCode)

思路分析(子问题):

状态机的变化:多了一个参数j表示我们最多可以交易几笔

image-20241113171715687

在加减prices[i]的时候进行j-1,表示我们进行了一笔交易,那剩下在递归的时候最多只能交易j-1次

注意:j-1只在加prices[i]或者减prices[i]的时候写一次,加表示我们卖出,可以看做一次交易,减表示一次买进,也可以看做一次交易,但是加减prices[i]的时候都写,就说明我们买进一次再卖出算成了两次交易,这样就错了

image-20241113172010082

笔者觉得在卖出的时候进行交易次数的计算比较好,就使用这个

递归边界部分,和前两道题不同的就是j如果小于0了那肯定就是不合法的状态,因为我们的交易次数最少应该是0,所以就返回一个负无穷表示这是不合法的

1.回溯 DFS

1.返回值和参数

i是每天的价格

status是状态,表示是否持有股票

j是我们现在最多可以交易多少笔

dfs返回值是我们在前i天持有或者不持有股票,在最多交易j次的前提下可以获得的最大利润

int dfs(int i,int j,int status,vector<int>& prices)

2.终止条件

就是在前两题的基础上了一个不合法的状态,那就是交易次数小于0的话要返回负无穷

注意判断的顺序,交易次数j一定要先判断,因为只要j小于0那肯定是不合法的

		if(j<0)
            return INT_MIN;
        if(i<0)
            if(status==1) 
                return INT_MIN;
            else
                return 0;

3.本层逻辑

在我们加prices[i]的时候,就说明是卖出股票,就说明第i天进行了一次交易,第i天的利润是prices[i],那前i-1天的利润就是在最多交易j-1笔的情况下的最大利润,传入j-1

		if(status==1)
            return max(dfs(i-1,j,1,prices),dfs(i-1,j,0,prices)-prices[i]);
        else
            return max(dfs(i-1,j,0,prices),dfs(i-1,j-1,1,prices)+prices[i]);

完整代码:

当然,这是超时的

class Solution {
public:
    int dfs(int i,int j,int status,vector<int>& prices)
    {
        if(j<0)
            return INT_MIN;
        if(i<0)
            if(status==1) 
                return INT_MIN;
            else
                return 0;
        if(status==1)
            return max(dfs(i-1,j,1,prices),dfs(i-1,j,0,prices)-prices[i]);
        else
            return max(dfs(i-1,j,0,prices),dfs(i-1,j-1,1,prices)+prices[i]);
    }
    int maxProfit(int k,vector<int>& prices) {
        return dfs(prices.size()-1,k,0,prices);
    }
}; 

2.记忆化搜索

就是搞一个哈希表dp,全都初始化为-1,每次返回前给哈希表dp赋值,碰到不是-1的那就是算过的,那就直接返回计算过的结果,不需要再次递归了

class Solution {
public:
    int dfs(int i,int j,int status,vector<int>& prices,vector<vector<vector<int>>>& dp)
    {
        if(j<0)
            return INT_MIN;
        if(i<0)
            if(status==1) 
                return INT_MIN;
            else
                return 0;
        if(dp[i][j][status]!=-1)
            return dp[i][j][status];
        if(status==1)
            return dp[i][j][status]=max(dfs(i-1,j,1,prices,dp),dfs(i-1,j,0,prices,dp)-prices[i]);
        else
            return dp[i][j][status]=max(dfs(i-1,j,0,prices,dp),dfs(i-1,j-1,1,prices,dp)+prices[i]);
    }
    int maxProfit(int k,vector<int>& prices) {
        vector<vector<vector<int>>> dp(prices.size(),vector<vector<int>>(k+1,vector<int>(2,-1)));
        return dfs(prices.size()-1,k,0,prices,dp);
    }
}; 
//lambda
class Solution {
public:
    int maxProfit(int k,vector<int>& prices) {
        vector<vector<vector<int>>> dp(prices.size(),vector<vector<int>>(k+1,vector<int>(2,-1)));
        function<int(int,int,int)> dfs=[&](int i,int j,int status)->int{
            if(j<0)
            return INT_MIN;
            if(i<0)
                if(status==1) 
                    return INT_MIN;
                else
                    return 0;
            if(dp[i][j][status]!=-1)
                return dp[i][j][status];
            if(status==1)
                return dp[i][j][status]=max(dfs(i-1,j,1),dfs(i-1,j,0)-prices[i]);
            else
                return dp[i][j][status]=max(dfs(i-1,j,0),dfs(i-1,j-1,1)+prices[i]);
        };
        return dfs(prices.size()-1,k,0);
    }
}; 

3.1:1翻译为动态规划

1.确定dp数组以及下标的含义

image-20241113173659276

dfs换成dp就是数组以及下标含义

2.确定递推公式

dp[i+1][j][0]=max(dp[i][j][0],dp[i][j-1][1]+prices[i]);
dp[i+1][j][1]=max(dp[i][j][1],dp[i][j][0]-prices[i]);

3.dp数组如何初始化(难理解的点)

1.第一维度prices.size()+1是我们的数组下标表示天数的i从1开始

2.表示交易次数的j初始化是k+2的大小是因为

-1,0,1,2,…,k一共是k+2个状态,这一点和递归里面的对应

3.对应递归的终止条件,j必须大于0才是合法的,其他的都是不合法的,所以一开始初始化都是负无穷(除以2是为了防止溢出)

然后单独把j大于0,并且是第0天(对应i<0的if),也不持有股票(对应的是递归里的if(status==0))都赋值为0,表示这种情况下没有利润

vector<vector<vector<int>>> dp(prices.size()+1,
                               vector<vector<int>>(k+2,
                                                   vector<int>(2,INT_MIN/2)));
for(int i=1;i<=k+1;i++)
	dp[0][i][0]=0;

4.确定遍历顺序

后续结果需要依赖前面的计算结果,故使用从前往后遍历

		for(int i=0;i<prices.size();i++)
        {
            for(int j=1;j<=k+1;j++)
            {
                dp[i+1][j][0]=max(dp[i][j][0],dp[i][j-1][1]+prices[i]);
                dp[i+1][j][1]=max(dp[i][j][1],dp[i][j][0]-prices[i]);
            }
        }

完整代码

class Solution {
public:
    int maxProfit(int k,vector<int>& prices) {
        vector<vector<vector<int>>> dp(prices.size()+1,vector<vector<int>>(k+2,vector<int>(2,INT_MIN/2)));
        for(int i=1;i<=k+1;i++)
            dp[0][i][0]=0;
        for(int i=0;i<prices.size();i++)
        {
            for(int j=1;j<=k+1;j++)
            {
                dp[i+1][j][0]=max(dp[i][j][0],dp[i][j-1][1]+prices[i]);
                dp[i+1][j][1]=max(dp[i][j][1],dp[i][j][0]-prices[i]);
            }
        }
        return dp[prices.size()][k+1][0];
    }
}; 

4.滚动数组优化

和01背包一样,前面都是i后面都是i-1

由于j要靠j-1推出来,所以需要从后往前遍历j

class Solution {
public:
    int maxProfit(int k,vector<int>& prices) {
        vector<vector<int>> dp(k+2,vector<int>(2,INT_MIN/2));
        for(int i=1;i<=k+1;i++)
            dp[i][0]=0;
        for(int i=0;i<prices.size();i++)
        {
            for(int j=k+1;j>=1;j--)
            {
                dp[j][0]=max(dp[j][0],dp[j-1][1]+prices[i]);
                dp[j][1]=max(dp[j][1],dp[j][0]-prices[i]);
            }
        }
        return dp[k+1][0];
    }
}; 

123.买卖股票的最佳时机III

[123. 买卖股票的最佳时机 III - 力扣(LeetCode)](https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-ii/description/)

就是上一题k=2的情况,带进去就完了,直接结束

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2240616.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PySpark——Python与大数据

一、Spark 与 PySpark Apache Spark 是用于大规模数据&#xff08; large-scala data &#xff09;处理的统一&#xff08; unified &#xff09;分析引擎。简单来说&#xff0c; Spark 是一款分布式的计算框架&#xff0c;用于调度成百上千的服务器集群&#xff0c;计算 TB 、…

<项目代码>YOLOv8 番茄识别<目标检测>

YOLOv8是一种单阶段&#xff08;one-stage&#xff09;检测算法&#xff0c;它将目标检测问题转化为一个回归问题&#xff0c;能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法&#xff08;如Faster R-CNN&#xff09;&#xff0c;YOLOv8具有更高的…

MySQL技巧之跨服务器数据查询:基础篇-动态参数

MySQL技巧之跨服务器数据查询&#xff1a;基础篇-动态参数 上一篇已经描述&#xff1a;借用微软的SQL Server ODBC 即可实现MySQL跨服务器间的数据查询。 而且还介绍了如何获得一个在MS SQL Server 可以连接指定实例的MySQL数据库的连接名: MY_ODBC_MYSQL 以及用同样的方法&a…

三天精通一种算法之螺旋矩阵(设计思路),长度最小子数组(滑动窗口)

这题主要考察思维 我来一一解释这串代码 var generateMatrix function(n) { const matrix Array.from({ length: n }, () > Array(n).fill(0)); let top 0, bottom n - 1; let left 0, right n - 1; var num 1; while (num < n * n) { …

2024-11-13 Unity Addressables1——概述与导入

文章目录 1 概述1.1 介绍1.2 主要作用1.3 Addressables 与 AssetBundle 的区别 2 导入3 配置3.1 方法一3.2 方法二 1 概述 1.1 介绍 ​ Addressables 是可寻址资源管理系统。 ​ Unity 从 2018.2 版本开始&#xff0c;建议用于替代 AssetBundle 的高阶资源管理系统。在 Unit…

python爬虫实战案例——爬取A站视频,m3u8格式视频抓取(内含完整代码!)

1、任务目标 目标网站&#xff1a;A站视频&#xff08;https://www.acfun.cn/v/ac40795151&#xff09; 要求&#xff1a;抓取该网址下的视频&#xff0c;将其存入本地&#xff0c;视频如下&#xff1a; 2、网页分析 进入目标网站&#xff0c;打开开发者模式&#xff0c;我们发…

web实验3:虚拟主机基于不同端口、目录、IP、域名访问不同页面

创建配置文件&#xff1a; 创建那几个目录及文件&#xff0c;并且写内容&#xff1a; 为网卡ens160添加一个 IPv4 地址192.168.234.199/24: 再重新激活一下网卡ens160&#xff1a; 重启服务&#xff1a; 关闭防火墙、改宽松模式&#xff1a; 查看nginx端口监听情况&#xff1a;…

在tiktok开店,商家可以享受到多少显著的优势?

短视频带货正在蓬勃发展&#xff0c;因此&#xff0c;许多人开始利用自媒体平台进行商品销售。越来越多的商家选择在TikTok上开设店铺。那么&#xff0c;在TikTok上开店&#xff0c;商家可以享受到哪些显著的优势呢&#xff1f; 1. 庞大的用户基础 TikTok拥有海量的用户群体&…

【系统设计】理解带宽延迟积(BDP)、吞吐量、延时(RTT)与TCP发送窗口的关系:优化网络性能的关键

在设计和优化网络性能时&#xff0c;理解 带宽延迟积&#xff08;BDP&#xff09;、吞吐量、延时&#xff08;RTT&#xff09; 和 TCP发送窗口 之间的关系至关重要。这些概念相互影响&#xff0c;决定了网络连接的性能上限&#xff0c;尤其是在高带宽、高延迟的环境中&#xff…

Flutter:使用Future发送网络请求

pubspec.yaml配置http的SDK cupertino_icons: ^1.0.8 http: ^1.2.2请求数据的格式转换 // Map 转 json final chat {name: 张三,message: 吃饭了吗, }; final chatJson json.encode(chat); print(chatJson);// json转Map final newChat json.decode(chatJson); print(newCha…

IOT物联网低代码可视化大屏解决方案汇总

目录 参考来源云服务商阿里云物联网平台产品主页产品文档 开源项目DGIOT | 轻量级工业物联网开源平台项目特点项目地址开源许可 IoTGateway | 基于.NET6的跨平台工业物联网网关项目特点项目地址开源许可 IoTSharp | 基于.Net Core开源的物联网基础平台项目特点项目地址开源许可…

redis 原理篇 26 网络模型 Redis是单线程的吗?为什么使用单线程

都是学cs的&#xff0c;有人月薪几万&#xff0c;有人月薪几千&#xff0c;哎&#xff0c; 相信 边际效用&#xff0c; 也就是说&#xff0c; 随着技术提升的越来越多&#xff0c;薪资的提升比例会更大 一个月几万&#xff0c;那肯定是高级开发了&#xff0c; 一个月几千&…

前端中的 File 和 Blob两个对象到底有什么不同

JavaScript 在处理文件、二进制数据和数据转换时&#xff0c;提供了一系列的 API 和对象&#xff0c;比如 File、Blob、FileReader、ArrayBuffer、Base64、Object URL 和 DataURL。每个概念在不同场景中都有重要作用。下面的内容我们将会详细学习每个概念及其在实际应用中的用法…

【QT常用技术讲解】优化网络链接不上导致qt、qml界面卡顿的问题

前言 qt、qml项目经常会涉及访问MySQL数据库、网络服务器&#xff0c;并且界面打开时的初始化过程就会涉及到链接Mysql、网络服务器获取数据&#xff0c;如果网络不通&#xff0c;卡个几十秒&#xff0c;会让用户觉得非常的不爽&#xff0c;本文从技术调研的角度讲解解决此类问…

JS的学习与使用

JS的学习与使用 一 什么是Javascript&#xff1f; Javascript是一门跨平台&#xff0c;面向对象的脚本语言&#xff0c;是用来控制网页行为的&#xff0c;它能使网页可以交互 java与Javascript是完全不同的语言&#xff0c;不论是概念还是设计&#xff0c;但是基础语法类似 E…

WebRTC视频 03 - 视频采集类 VideoCaptureDS 上篇

WebRTC视频 01 - 视频采集整体架构 WebRTC视频 02 - 视频采集类 VideoCaptureModule [WebRTC视频 03 - 视频采集类 VideoCaptureDS 上篇]&#xff08;本文&#xff09; WebRTC视频 04 - 视频采集类 VideoCaptureDS 中篇 WebRTC视频 05 - 视频采集类 VideoCaptureDS 下篇 一、前…

发布rust crate

文章目录 一、cargo构建的配置类型&#xff1a;dev与release两种1.编译级别2.将 crate 发布到 Crates.io对整个库的注释pub use再导出功能发布crates.io 参考 一、cargo构建的配置类型&#xff1a;dev与release两种 $ cargo buildFinished dev [unoptimized debuginfo] targe…

Bugku CTF_Web——文件上传

Bugku CTF_Web——文件上传 进入靶场 My name is margin,give me a image file not a php抓个包上传试试 改成png也上传失败 应该校验了文件头 增加了文件头也不行 试了一下 把文件类型改成gif可以上传 但是还是不能连接 将Content-Type改大小写 再把文件后缀名改成php4 成…

三菱FX5UPLC以太网Socket通信功能

通过专用指令与通过以太网连接的对象设备以TCP及UDP协议收发任意数据的功能。 *1、是用于存储从开放的对象设备中接收到的数据的区域。 CPU模块:连接No.1~8以太网模块:连接No.1~32 以TCP协议进行通信时 TCP是在对象设备的端口号间建立连接&#xff0c;从而进行可靠的数据通信…

jmeter介绍、使用方法、性能测试、现参数化和数据驱动、分布式测试、压力测试、接口测试

目录 1.JMeter的组件介绍 2.JMeter介绍和使用方法 3.使用JMeter进行性能测试 4.JMeter如何实现参数化和数据驱动 5.使用JMeter进行分布式测试 6.使用JMeter完成压力测试 7.使用JMeter完成接口测试 下载并安装JMeter&#xff1a;从官方网站&#xff08;https://jmeter.ap…