7+纯生信,单细胞识别细胞marker+100种机器学习组合建模,机器学习组合建模取代单独lasso回归势在必行!

news2024/11/23 19:24:26

影响因子:7.3

研究概述:

皮肤黑色素瘤(SKCM)是所有皮肤恶性肿瘤中最具侵袭性的类型。本研究从GEO数据库下载单细胞RNA测序(scRNA-seq)数据集,根据原始研究中定义的细胞标记重新注释各种免疫细胞,以确定其特异性标志。接着通过计算免疫细胞通信网络,结合对通信网络的大量分析和通信模式的识别,对所有网络进行了定量表征和比较。最后基于bulk RNA测序数据,使用机器学习训练了枢纽通讯细胞的特定标记物,开发了新的免疫相关预后组合。

机器学习目前在肿瘤和非肿瘤生信中越来越常见,不管是构建模型还是筛选关键基因,都有很出色的发挥。想做类似分析的朋友,欢迎交流!

研究结果:

一、T细胞和B细胞是SKCM免疫微环境中的主要细胞成分

1. 使用scRNA-seq数据集获得2106个免疫细胞,使用t-SNE算法实现降维和无监督聚类并选择0.8作为最佳分辨率,观察到最大分叉簇(图1A)。t-SNE算法揭示了13种不同的细胞簇(图1B)。


2. 使用“singleR”函数注释了7种免疫细胞,“plotScoreHeatmap”函数显示所有参考标签中所有细胞的得分,以检查整个数据集预测标签的置信度(图1C)。

3. 作者注释了5种类型的免疫细胞簇:簇0,6,8,11为CD8 + T细胞,簇1,4,9为CD4 + T细胞,簇2,3为B细胞,簇5,10为单核细胞和树突状细胞,簇7为NK细胞(图1D)。在16个样本中,5种主要类型免疫细胞的数量和比例表现出高度的相似性,表明T细胞和B细胞是SKCM免疫微环境的主要组成部分(图1E、F)。


二、单核细胞是免疫通信网络中传入和传出信号的主要贡献者

1. 作者在七个免疫细胞组中观察过表达的配体或受体及其相互作用,以确定免疫细胞之间的相互作用(图2A)。圆形图显示了任两个细胞群之间的相互作用时间和相互作用的一般强度,与其他免疫细胞相比,单核细胞在免疫通讯网络的输入和输出信号中贡献最大(图2B-D)。不同免疫细胞组对输入和输出信号的贡献信号明显不同(图2E)。


2. 结合表观和剪影指数来识别6种传出和5种传入模式(图3A, D)。此外,输入和输出信号是细胞特异性的,而T细胞、CD8+ T细胞和NK细胞的传入信号具有相似性(图3B, E)。图3C, F显示了传出和传入模式的不同信号对各种细胞群的贡献程度。


三、MRS表现出稳健的DSS预测性能

1. 由于单核细胞在细胞通讯中占主导地位,故采用LOOCV框架将TCGA-SKCM中与其他免疫细胞相比在单核细胞中特异性高表达的87个生物标志物拟合到101个预测模型中。

2. 在所有验证数据集中计算每个模型的C指数。最佳模型组合是CoxBoost和stepCox(both)具有最高的平均C指数(0.638)(图4A)。最终建立了8基因单核细胞相关特征(MRS),包括8个基因C1QA,DAB2,F13A1,FCGR2A,FCGRT,HMOX1,IFITM3,SOD2。

3. 在训练数据集TCGA-SKCM中发现低风险组拥有相对较长的无进展生存期(PFS)(图4B)。高危组在训练数据集、外部验证数据集GSE65904和GSE54467中的疾病特异性生存期(DSS)明显较低(图4C-E)。

4. MRS识别的1年、3年和5年PFS(图4F)和DSS(图4G-I)的曲线下面积(AUC)值证明MRS是一种有效的的预测工具,具有稳定性和强度及良好的特异性和敏感性。

5. 单因素Cox回归分析显示MRS、年龄、分期、T分期、N分期与DSS密切相关(图4J)。

多因素Cox回归分析显示,MRS可作为SKCM患者的独立预后因素(图4K)。

该时间依赖性C指数表明MRS优于常规临床变量(图4L)。

DCA解释了与常规临床变量相比,MRS可以确切地使患者受益(图4M)。


6. 在三个单细胞外部数据集(GSE123139(图5A),GSE120575(图5B),GSE72056(图5C)中,八个MRS基因表达最密集的细胞类型被确认为单核细胞,进一步证明MRS的稳定性和可重复性。


四、转录组定义的亚类在生物学上不同,免疫浸润在统计学上与更有利的预后相关

1. 七种免疫浸润算法具有一致性,高危组免疫细胞浸润始终较少(图6A)。风险评分与淋巴细胞和M1巨噬细胞的细胞含量呈显著正相关(图6B)。

2. 在SKCM的免疫亚型中,低风险组IFN-γ显性亚型的患者明显更多,而淋巴细胞枯竭亚型的患者较少(图6C)。ssGSEA结果一致显示低危组具有更好的免疫功能(图6D)。


3. 免疫滤过与较好的预后之间有统计学相关性。七个数据集的通路分析有力地证实了高、低风险人群的生物学独特性。低危组淋巴细胞活化、抗原呈递等相关通路被激活,而高危组在黑色素形成、角化等相关通路显著富集(图7A)。

4. HLA、免疫检查点、趋化因子和共刺激分子在低危组高表达(图7B)。此外,包含18种转录因子的细胞调控子活性谱突出了高、低风险组之间可能存在的调节模式差异(图7C)。


五、IFITM3是MRS的核心基因,在SKCM中高表达

1. 使用“mgeneSim”函数发现MRS中的关键基因IFITM3(图8A)。

2. 作者利用TISCH数据库,在所有10个SKCM单细胞数据集中,定位IFITM3在免疫和非免疫细胞中的表达情况。IFITM3不仅在单核巨噬细胞中高表达,而且在微环境中的非免疫细胞和黑色素瘤细胞中也高表达(图8B)。

3. 通过HPA数据库的免疫组化数据发现IFITM3在SKCM中的蛋白水平表达也高于正常皮肤(图8C, D)。


研究总结:

本研究创新地整合了scRNA-seq和Bulk RNA-seq以及机器学习工具,8基因单核细胞相关特征(MRS)被描述并被证实是一种潜在的生物标志物。此外还探讨了SKCM中通信网络的概况,并描述了特定的标记物IFITM3和不可或缺的细胞-单核细胞。研究结果为破译TME和揭示SKCM的生物学机制提供了启示。



喜欢的朋友记得点赞、收藏、关注哦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2239081.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp解析蓝牙设备响应数据bug

本文章为了解决《uniapp 与蓝牙设备收发指令详细步骤(完整项目版)》中第十步的Array 解析成 number函数bug 1、原代码说明 function array16_to_number(arrayValue) {const newArray arrayValue.filter(item > String(item) ! 00 || String(item) ! 0)const _number16 ne…

【递归回溯与搜索算法篇】算法的镜花水月:在无尽的自我倒影中,递归步步生花

文章目录 递归回溯搜索专题(一):递归前言第一章:递归基础及应用1.1 汉诺塔问题(easy)解法(递归)C 代码实现时间复杂度和空间复杂度易错点提示 1.2 合并两个有序链表(easy…

大数据开发面试宝典

312个问题,问题涵盖广、从自我介绍到大厂实战、19大主题,一网打尽、真正提高面试成功率 一、Linux 1. 说⼀下linux的常⽤命令? 说一些高级命令即可 systemctl 设置系统参数 如:systemctl stop firewalld关闭防火墙 tail / hea…

链表归并与并集相关算法题|两递增归并为递减到原位|b表归并到a表|两递减归并到新链表(C)

两递增归并为递减到原位 假设有两个按元素递增次序排列的线性表,均以单链表形式存储。将这两个单链表归并为一个按元素递减次序排列的单链表,并要求利用原来两个单链表的节点存放归并后的单链表 算法思想 因为两链表已按元素值递增次序排列&#xff0…

【RabbitMQ】06-消费者的可靠性

1. 消费者确认机制 没有ack,mq就会一直保留消息。 spring:rabbitmq:listener:simple:acknowledge-mode: auto # 自动ack2. 失败重试机制 当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者。…

【陕西】《陕西省省级政务信息化项目投资编制指南(建设类)(试行)》-省市费用标准解读系列07

《陕西省省级政务信息化项目投资编制指南(建设类)(试行)》规定了建设类项目的费用投资测算方法与计价标准,明确指出建设类项目费用包括项目建设费和项目建设其他费(了解更多可直接关注咨询我们)…

VB6.0桌面小程序(桌面音乐播放器)

干货源码 Imports System.IO Imports System.Security.Cryptography Public Class Form1 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load Button1.Text “上一曲” Button4.Text “播放” Button3.Text “下一曲” Button2.Text “顺序播…

docker安装jdk8

1、拉取镜像 docker pull openjdk:82、运行镜像 docker run -d --restartalways --network portainer_network -it --name jdk8 openjdk:8命令 作用 docker run 创建并启动一个容器 –name jdk8 将容器取名为jdk8 -d 设置后台运行 –restartalways 随容器启动 –network port…

【人工智能】Transformers之Pipeline(二十三):文档视觉问答(document-question-answering)

​​​​​​​ 目录 一、引言 二、文档问答(document-question-answering) 2.1 概述 2.2 impira/layoutlm-document-qa 2.2.1 LayoutLM v1 2.2.2 LayoutLM v2 2.2.3 LayoutXLM 2.2.4 LayoutLM v3 2.3 pipeline参数 2.3.1 pipeline对象实例化…

微服务day06

MQ入门 同步处理业务: 异步处理: 将任务处理后交给MQ来进行分发处理。 MQ的相关知识 同步调用 同步调用的小结 异步调用 MQ技术选型 RabbitMQ 安装部署 其中包含几个概念: publisher:生产者,也就是发送消息的一方 …

[CKS] K8S RuntimeClass SetUp

最近准备花一周的时间准备CKS考试,在准备考试中发现有一个题目关于RuntimeClass创建和挂载的题目。 ​ 专栏其他文章: [CKS] Create/Read/Mount a Secret in K8S-CSDN博客[CKS] Audit Log Policy-CSDN博客 -[CKS] 利用falco进行容器日志捕捉和安全监控-CSDN博客[CKS…

Halcon基于laws纹理特征的SVM分类

与基于区域特征的 SVM 分类不同,针对图像特征的 SVM 分类的算子不需要直接提取 特征,下面介绍基于 Laws 纹理特征的 SVM 分类。 纹理在计算机视觉领域的图像分割、模式识别等方面都有着重要的意义和广泛的应 用。纹理是指由于物体表面的物理属性不同所…

初始Python篇(6)—— 字符串

找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程(ಥ_ಥ)-CSDN博客 所属专栏: Python 目录 字符串的常见操作 格式化字符串 占位符 f-string 字符串的 format 方法 字符串的编码与解码 与数据验证相关的方法 …

基于Spring Boot+Vue的养老院管理系统【原创】

一.系统开发工具与环境搭建 1.系统设计开发工具 后端使用Java编程语言的Spring boot框架 项目架构:B/S架构 运行环境:win10/win11、jdk17 前端: 技术:框架Vue.js;UI库:ElementUI; 开发工具&…

Maven 中央仓库地址 mvnrepository.com

下载一些 jar 包驱动,不需用去官网下了,直接去 Maven 中央仓库,高效、简单 Maven 中央仓库地址 https://mvnrepository.com/open-source 我们下期见,拜拜!

2024 年将 Postman 文档导出为 HTML 或 Markdown

2024 年将 Postman 文档导出为 HTML 或 Markdown

Anaconda安装库

相信有些人可能遇到pip直接安装失败,conda直接安装失败,pip镜像安装仍然失败的可能性,下面我记录一下我的一种解决方法。 我使用的是上面的miniconda3配置。 1.创建虚拟环境 首先,先新建一个虚拟环境 conda create -n py39 pyt…

linux命令详解,openssl+历史命令详解

openssl openssl是一个开源的加密工具包,提供了各种加密、解密、签名、验证等功能 openssl passwd -1 123password表示这个命令用于处理密码相关的操作,-1参数指定使用MD5加密算法对密码“123”进行加密处理。MD5是一种常用的哈希算法,它将…

Flink运行时架构以及核心概念

1.运行构架 1.提交作业后启动一个客户端进程,客户端解析参数(-d -t 等等),后进行封装由Actor通信系统提交,取消,更新任务给JobManager。 2.JobManager(进程)通信系统一个组件叫分发…

解决C盘空间不足的三种方案

方案一:网上盛传的C盘磁盘碎片整理🧩(原理:将分散的文件片段整理到相邻的磁盘区域,减少文件的碎片化程度)(效果不明显) 方案二:把其他盘的空间给C盘 💽(效果显著&#xf…