【人工智能】ChatGPT多模型感知态识别

news2024/12/26 0:13:22

目录

  • ChatGPT辅助细化知识增强!
  • 一、研究背景
  • 二、模型结构和代码
      • 任务流程
      • 一:启发式生成
  • 三、数据集介绍
  • 三、性能展示
  • 实现过程
  • 运行过程
      • 训练过程

在这里插入图片描述

ChatGPT辅助细化知识增强!

在这里插入图片描述
多模态命名实体识别(MNER)最近引起了广泛关注。 用户在社交媒体上生成大量非结构化内容,主要由图像和文本组成。这些帖子具有与社交媒体相关的固有特征,包括简洁和非正式的写作风格。 这些独特的特征对传统的命名实体识别(NER)方法提出了挑战。

一、研究背景

社交媒体上的多模态命名实体识别(MNER)旨在通过结合基于图像的线索来增强文本实体预测。 现有的研究主要集中在最大限度地利用相关图像信息或结合显式知识库中的外部知识。

二、模型结构和代码

我的模型主要分为两个阶段。在生成辅助细化知识的阶段,我利用一组有限的预定义人工样本,并采用多模态相似示例感知模块来仔细选择相关实例。然后,将这些选定的示例合并到格式正确的提示中,从而增强为 ChatGPT 提供的启发式指导,以获取精炼的知识。

任务流程

  1. 任务公式化
    在这里插入图片描述

  2. 上下文学习
    在这里插入图片描述
    虽然GPT-4可以接受多模态信息输入,但这一功能仅处于内部测试阶段,尚未公开使用。此外,与ChatGPT相比,GPT-4的成本更高,API请求速度较慢。为了提高可复现性,我们仍然选择ChatGPT作为主要的研究对象,并且提供的这一范式也可以用于GPT-4。

为了使ChatGPT能够完成图文多模态任务,使用了先进的多模态预训练模型将图像转换为图像说明。最后将测试输入x设计为以下模板:
在这里插入图片描述

一:启发式生成

  1. 预定义的人工样本
    使ChatGPT在MNER任务中表现更好的关键在于选择合适的上下文示例。获取准确标注的上下文示例,这些示例能够精确反映数据集的标注风格并提供扩展辅助知识的途径,是一个显著的挑战。直接从原始数据集中获取这些示例并不可行。为了解决这个问题,我采用了随机抽样的方法,从训练集中选择一小部分样本进行人工标注。具体来说,对于Twitter-2017数据集,从训练集中随机抽取200个样本进行人工标注,而对于Twitter-2015数据集,数量为120。标注过程包括两个主要部分。第一部分是识别句子中的命名实体,第二部分是综合考虑图像和文本内容以及相关知识,提供全面的理由说明。在标注过程中遇到的多种情况中,标注者需要从人类的角度正确判断并解释样本。对于图像和文本相关的样本,我们直接说明图像中强调了文本中的哪些实体。对于图像和文本无关的样本,我们直接声明图像描述与文本无关。通过人工标注过程,强调了句子中的实体及其对应的类别。此外,引入了相关的辅助知识来支持这些判断。这个细致的标注过程为ChatGPT提供了指导,使其能够生成高度相关且有价值的回答。

  2. 多模态相似示例感知模块
    由于GPT的少样本学习能力在很大程度上取决于上下文示例的选择,我设计了多模态相似示例感知(MSEA)模块来选择合适的上下文示例。作为一个经典的多模态任务,MNER的预测依赖于文本和视觉信息的整合。因此,我们将文本和图像的融合特征作为评估相似示例的基本标准。而这种多模态融合特征可以从之前的多模态命名实体识别(MNER)模型中获得。将MNER数据集D和预定义的人工样本
    G

在这里插入图片描述

在以往的研究中,经过交叉注意力投射到高维潜在空间的融合特征H会直接输入到解码层,以进行结果预测。我们的模型选择HH作为相似示例的判断依据,因为在高维潜在空间中相近的示例更有可能具有相同的映射方式和实体类型。计算测试输入与每个预定义人工样本的融合特征H的余弦相似度。然后,选择前N个相似的预定义人工样本作为上下文示例,以启发ChatGPT生成辅助的精炼知识:
在这里插入图片描述
为了高效实现相似示例的感知,所有的多模态融合特征可以提前计算并存储。

三、数据集介绍

我们在两个公共 MNER 数据集上进行了实验:Twitter-2015和 Twitter-2017。这两个数据集都是从Twitter平台上收集的,包含了文本和图像的配对信息,主要用于研究在社交媒体短文本场景下的多模态命名实体识别和情感分析等任务。、

  1. Twitter-2015: 推文中的文本部分被手动标注了命名实体,并使用BIO2(Beginning- Inside-Outside)标注方案对命名实体进行分类。实体类别包括人物(Person)、组织(Organization)、地点(Location)等。3373/723/723(train/development/test)

三、性能展示

在这里插入图片描述

  • 本文所有资源均可在该地址处获取。

实现过程

在下载附件并准备好数据集并调试代码后,进行下面的步骤,附件已经调通并修改,可直接正常运行;
环境要求

python == 3.7
torch == 1.13.1
transformers == 4.30.2
modelscope == 1.7.1
  1. 我们的项目基于AdaSeq, AdaSeq项目基于Python版本>= 3.7和PyTorch版本>= 1.8。

  2. 下载

git clone https://github.com/modelscope/adaseq.git
cd adaseq
pip install -r requirements.txt -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
  1. 训练模型
python -m scripts.train -c examples/ER/twitter-15.yaml
	python -m scripts.train -c examples/ER/twitter-17.yaml

运行过程

训练过程

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2238340.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【黑马点评debug日记】

q1:登录无session跳转主页 p30,页面登录后返回,然后点击我的,需要重新设置,拦截器都没有问题。 参考: redis 黑马点评p30 login没有正常跳转,修改前端代码后还是一直跳转主界面_黑马点评登录后跳转到主页…

地面远阴影对光伏电站的影响

影响因素 1、太阳高度角和方位角 太阳高度角是指太阳光的入射方向和地平面之间的夹角。太阳高度角随时间、季节和地理位置的变化而变化。 方位角是指太阳光线在水平面上的投影与正南方向的夹角。方位角也随时间和地理位置的变化而变化。 可以通过天文公式或者专业的太阳位置…

消息队列高级

目录 消息可靠性 生产者消息确认 第一步:修改application.yml配置文件信息 第二步:定义发送者确认confirm回调方法 第三步:创建消息发送者回执return回调方法(确保消息从交换机到消息队列) 总结: 消息持…

宏观经济学笔记

【拯救者】宏观经济学速成 国民生产总值GNP: GNP 衡量一国(地区)成员在一定时期内运用生产要素所生产的全部最终产品和服务的市场价值。凡是本国国民所 创造的收入,不管生产要素是否在国内,都计入本国GNP中。 GDP本国居民在本国创造的价值外国居民在本国…

ONLYOFFICE 8.2测评:功能增强与体验优化,打造高效办公新体验

引言 随着数字化办公需求的不断增长,在线办公软件市场竞争愈加激烈。在众多办公软件中,ONLYOFFICE 无疑是一个颇具特色的选择。它不仅支持文档、表格和演示文稿的在线编辑,还通过开放的接口与强大的协作功能,吸引了众多企业和个人…

独显装完ubuntu后启动黑屏显示/dev/sda:clean files blocks的解决方案

解决方案如下: 选中Ubuntu按E键 在编辑界面倒数第2行的linux那行(后面有quiet splash选项)的最后添加nomodeset 然后按F10保存重启 然后管理员权限打开/etc/modprobe.d/blacklist.conf,在文件末尾添加: blacklist…

[Docker#2] 发展历史 | Namespace环境隔离 | Cgroup资源控制

目录 1.发展历史 Jail 时代 云时代 云原生时代 技术标准的确立 虚拟机 vs Docker 2. 容器化技术 2.1 Namespace 命令详解 1. dd 命令 2. mkfs 命令 3. df 命令 4. mount 命令 5. unshare 命令 实战 进程隔离 文件隔离 2.2 CGroup 相关命令 2.1 pidstat 2.…

AI生活之我用AI处理Excel表格

AI生活之我用AI处理Excel表格 场景再现AI提问词AI代码运行调试结果心得感受 场景再现 因学习需要,整理了某个题库,方便自己刷题使用。 已将每套题打上了制定标签,得到一个Excel表格。截图如下: 需求是:一共35套题&…

Stable Diffusion Web UI - ControlNet 姿势控制 openpose

openpose 是 ControlNet 中常用的控制模式之一。 通过 openpose 可以锁定人物姿势,把姿势信息传递给 Stable Diffusion 扩散模型,让其在扩散生成图片的时候遵照特定的任务姿势。 通过 openpose 能够得到类似如下效果: 同样的姿势&#xff0…

第三百一十九节 Java线程教程 - Java线程中断

Java线程教程 - Java线程中断 我们可以通过使用interrupt()方法中断一个活动的线程。 这个方法调用在线程只是一个指示。它是由线程如何响应中断。 例子 下面的代码显示了中断主线程并打印线程中断状态的代码。 public class Main {public static void main(String[] args)…

人工智能(AI)和机器学习(ML)技术学习流程

目录 人工智能(AI)和机器学习(ML)技术 自然语言处理(NLP): Word2Vec: Seq2Seq(Sequence-to-Sequence): Transformer: 范式、架构和自注意力: 多头注意力: 预训练、微调、提示工程和模型压缩: 上下文学习、思维链、全量微调、量化、剪枝: 思维树、思维…

Cynet:全方位一体化安全防护工具

前言 1999年,布鲁斯施奈尔曾说过:“复杂性是安全最大的敌人。”彼时还是19年前,而现在,网络安全已然变得更加繁杂。 近日我在网上冲浪过程中发现了这么一个平台性质的软件,看似具有相当强的防护能力。 根据Cynet的描…

可变类型参数

将形参设为可变类型参数,首先自己的函数要先有一个确定的形参,然后剩余的参数为 ... 用到三个宏,va_list, va_start, va_arg . va_list: 当作一个类型,底层是一个char* 被 typedef va_strat: 先定义一个va_list 类型的变量&#x…

AlphaFold3 开源啦!喜大普奔!

2024年5月8日,AlphaFold3 正式发布!时隔半年,今天,AlphaFold3 终于开源啦!🎉 不过别太激动哈哈哈哈哈,权重还是要额外申请的! 半年前,AlphaFold3 的发布激起了学术界的广…

什么是多因素身份验证(MFA)的安全性?

多因素身份验证(MFA)简介 什么是MFA 多因素身份验证(MFA)是一种安全过程,要求用户在授予对系统、应用程序或账户的访问权限之前提供两种或多种形式的验证。仅使用单个因素(通常是用户名和密码)保护资源会使它们容易受到泄露,添加…

Autosar CP Can State Mangement规范导读

CanSM的主要功能 CAN网络通信模式控制 管理CAN网络的启动、停止和不同通信模式(如全通信、静默通信、无通信)之间的切换。通过状态机实现对CAN网络状态的精确控制,确保网络在不同条件下稳定运行。错误处理与状态报告 根据AUTOSAR基础软件的错误分类方案处理错误,包括开发错…

【Python爬虫实战】全面解析 DrissionPage:简化 Python 浏览器自动化的三种模式

🌈个人主页:易辰君-CSDN博客 🔥 系列专栏:https://blog.csdn.net/2401_86688088/category_12797772.html ​ 目录 前言 一、DrissionPage简介 (一)ChromiumPage (二)WebPage &a…

测试驱动:编写完善测试用例的艺术

测试驱动:编写完善测试用例的艺术 如何编写测试用例 如何撰写高效的测试用例,为产品的稳定性和质量保驾护航。无论你是新手还是经验丰富的测试工程师,让我们一起深入探讨,掌握测试用例编写的精髓! 1. 明确测试目标 …

Linux系统编译boot后发现编译时间与Windows系统不一致的解决方案

现象 如下图,从filezilla软件看虚拟机Linux中编译的uboot.img修改时间与Windows系统时间不同 解决过程 在Linux中查看编译的uboot详细信息,从而得到编译时间。终端输入ls -l后,如下图: 结论 说明在Linux是按照Windows系统时…

24.11.10

星期一: 补 23ICPC 合肥 G cf传送门 思路:由使第 k个最大这种条件易联想到二分,但是如何check是个问题 check使用dp,先想到个比较朴素的状态设定,dp【i】【j】…