存算分离与计算向数据移动:深度解析与Java实现

news2025/1/11 15:08:44

背景

随着大数据时代的到来,数据量的激增给传统的数据处理架构带来了巨大的挑战。传统的“存算一体”架构,即计算资源与存储资源紧密耦合,在处理海量数据时逐渐显露出其局限性。为了应对这些挑战,存算分离(Disaggregated Storage and Compute Architecture)和计算向数据移动(Compute Moves to Data)两种架构应运而生,成为大数据处理领域的热门技术。

存算分离架构
背景

存算分离架构是一种新的数据架构设计范式,它将计算层和存储层解耦合,形成独立的分布式服务。这种架构设计的目标是为了解决数据灵活开放、计算和存储独立扩展以及资源隔离的需求。随着硬件技术的快速进步,尤其是网络和存储设备的性能迅速提升,以及云计算厂商推动软硬件协同加速的云存储服务,越来越多的企业开始基于云存储来构建数据存储服务或数据湖,因此就需要单独再建设一个独立的计算层来提供数据分析服务。

功能点
  1. 资源隔离:存算分离架构将存储和计算任务分配到不同的服务器上,避免了资源竞争和冲突,提高了系统的稳定性和可靠性。
  2. 弹性扩展:存算分离架构可以根据实际需求独立扩展存储和计算资源,提高了系统的灵活性和可扩展性。
  3. 高性能计算:存算分离架构可以将计算任务分配到专门的计算节点上,提供更强大的计算能力,加速数据处理的速度和效率。
  4. 数据安全:存算分离架构将存储节点和计算节点进行隔离,提高了数据的安全性。
业务场景

存算分离架构适用于大规模数据的分析和处理场景,如数据挖掘、机器学习、人工智能等领域。同时,它也适用于实时数据处理和监控、数据仓库服务等场景。在云环境中,存算分离架构更是成为主流,如AWS的EMR、阿里云的MaxCompute、华为的MRS等都采用了这种架构。

底层原理

存算分离架构自上而下分为数据分析层、计算层和存储层。计算层和存储层是独立的分布式服务,它们通过网络进行通信和协作。这种架构的核心思想是将计算和存储解耦,使得资源可以更灵活地扩展和管理。在存储层,数据被存储在高效的外部存储中,如Hadoop HDFS、Amazon S3等。在计算层,Spark等计算引擎负责处理数据。

计算向数据移动
背景

计算向数据移动是一种数据处理策略,它将计算逻辑下发到数据所在的节点上执行,而不是将数据传输到计算节点进行处理。这种方式可以有效减少数据传输的时间和网络带宽的开销,提高数据处理的效率。Hadoop框架就采用了这种设计理念,其核心组件HDFS和MapReduce通过移动计算而非移动数据的方式实现了高效的数据处理。

功能点
  1. 减少网络开销:计算向数据移动避免了大量数据在网络中的传输,从而减少了网络带宽的消耗和传输延迟。
  2. 提高处理效率:由于计算任务直接在数据所在的节点上执行,因此可以充分利用本地IO的性能,提高数据处理的效率。
  3. 支持并行处理:计算向数据移动支持将大的数据集分成多个小的数据块,分别在不同的节点上并行处理,从而进一步提高数据处理的速度。
业务场景

计算向数据移动适用于各种大数据处理场景,尤其是那些需要处理海量数据且对处理效率有较高要求的场景。例如,在实时分析、在线监控、日志处理等场景中,计算向数据移动可以显著提高系统的响应速度和处理能力。

底层原理

计算向数据移动的底层原理是基于分布式计算框架实现的。以Hadoop为例,其HDFS组件负责存储数据,而MapReduce组件负责处理数据。在处理数据时,MapReduce框架会将计算任务分配到数据所在的节点上执行,而不是将数据传输到计算节点。这种方式充分利用了本地IO的性能优势,减少了网络传输的开销。

Java Demo实现

作为一名资深架构师,我将通过一个简单的Java Demo来展示如何实现存算分离架构和计算向数据移动的思想。这个Demo将模拟一个大数据处理场景,其中数据存储在HDFS上,而计算任务通过Spark执行。

环境准备

首先,我们需要准备一个Hadoop和Spark的环境。假设Hadoop和Spark已经安装并配置好,HDFS已经启动并可以访问。

数据存储

我们将一些数据存储在HDFS上。可以使用Hadoop的命令行工具将数据上传到HDFS:

bash复制代码
hdfs dfs -mkdir -p /user/hadoop/data
hdfs dfs -put /local/path/to/data /user/hadoop/data
计算逻辑实现

接下来,我们使用Spark来编写计算逻辑。Spark支持Scala、Java、Python等多种编程语言,这里我们使用Java来编写计算逻辑。

首先,添加Spark依赖到你的项目中。如果你使用的是Maven,可以在pom.xml中添加以下依赖:

xml复制代码
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.12</artifactId>
<version>3.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.3.1</version>
</dependency>
</dependencies>
然后,编写Spark应用程序:

java复制代码
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
public class DataProcessingApp {
public static void main(String[] args) {
// 创建SparkSession
SparkSession spark = SparkSession.builder()
                .appName("DataProcessingApp")
                .master("local[*]")
                .getOrCreate();
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());
// 读取HDFS上的数据
        JavaRDD<String> dataRDD = sc.textFile("hdfs://namenode:8020/user/hadoop/data/input.txt");
// 执行计算逻辑,例如计算单词频率
        JavaRDD<Tuple2<String, Integer>> wordCounts = dataRDD.flatMap(line -> Arrays.asList(line.split(" ")).iterator())
                .mapToPair(word -> new Tuple2<>(word, 1))
                .reduceByKey(Integer::sum);
// 将结果转换为Dataset并输出
        Dataset<Row> result = spark.createDataFrame(wordCounts.map(tuple -> RowFactory.create(tuple._1, tuple._2)),
                DataTypes.createStructType(new StructField[]{
                        DataTypes.createStructField("word", DataTypes.StringType, false),
                        DataTypes.createStructField("count", DataTypes.IntegerType, false)
                }));
        result.show();
// 停止SparkContext
        sc.stop();
    }
}
运行Demo

确保Hadoop和Spark的环境变量已经配置好,然后编译并运行上述Java程序。程序将读取HDFS上的数据,执行单词频率计算,并将结果输出到控制台。

学习曲线

存算分离架构和计算向数据移动是大数据处理领域的高级技术,学习曲线相对陡峭。对于初学者来说,首先需要掌握Hadoop和Spark等分布式计算框架的基本概念和操作。然后,需要深入理解存算分离架构的设计理念和实现方式。最后,通过实际项目经验来加深对这两种技术的理解和掌握。

总结

存算分离架构和计算向数据移动是大数据处理领域的两大核心技术。存算分离架构通过将计算和存储解耦,实现了资源的灵活扩展和管理;而计算向数据移动则通过减少网络开销和提高处理效率,提升了大数据处理的性能。这两种技术的结合使用,可以为企业构建高效、可扩展、可靠的大数据处理平台提供有力支持。

作为一名资深架构师,我们应该深入理解这两种技术的原理和应用场景,并在实际项目中加以应用。通过不断优化和改进架构设计,我们可以为企业创造更大的价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2237626.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WPS单元格重复值提示设置

选中要检查的所有的单元格 设置提示效果 当出现单元格值重复时&#xff0c;重复的单元格就会自动变化 要修改或删除&#xff0c;点击

Linux笔记之pandoc实现各种文档格式间的相互转换

Linux笔记之pandoc实现各种文档格式间的相互转换 code review! 文章目录 Linux笔记之pandoc实现各种文档格式间的相互转换1.安装 Pandoc2.Word转Markdown3.markdown转html4.Pandoc 支持的一些常见格式4.1.输入格式4.2.输出格式 1.安装 Pandoc sudo apt-get install pandoc # …

MySQL重难点(一)索引

目录 一、引子&#xff1a;MySQL与磁盘间的交互基本单元&#xff1a;Page 1、重要问题&#xff1a;为什么 MySQL 每次与磁盘交互&#xff0c;都要以 16KB 为基本单元&#xff1f;为什么不用多少加载多少&#xff1f; 2、有关MySQL的一些共识 3、如何管理 Page 3.1 单个 P…

solo博客使用非docker方式进行https部署

solo博客使用非docker方式进行https部署 数据库配置启动命令讲解设置自定义访问端口&#xff1a;9168 配置https访问部署效果 服务器上请通过 Docker 部署。但是我服务器资源有限&#xff0c;不想安装docker&#xff0c;直接以编译包的形式运行&#xff0c;节省资源。 如果不会…

【Steam登录】protobuf协议逆向 | 续

登录接口&#xff1a; ‘https://api.steampowered.com/IAuthenticationService/BeginAuthSessionViaCredentials/v1’ 精准定位&#xff0c;打上条件断点 this.CreateWebAPIURL(t) ‘https://api.steampowered.com/IAuthenticationService/BeginAuthSessionViaCredentials/v1…

环形链表问题(图 + 证明 + 题)

文章目录 判断链表是否有环返回链表开始入环的第一个结点 判断链表是否有环 题目链接 思路&#xff1a; 可以明确的是&#xff1a;若一个链表带环&#xff0c;那么用指针一直顺着链表遍历&#xff0c;最终会回到某个地方。 我们可以定义两个指针&#xff08;快慢指针&#xf…

Linux Centos7 如何安装图形化界面

如果系统是以最小安装的话,一般是不带有图形化界面的,如果需要图形话界面,需要单独安装。本篇教程,主要介绍如何在CentOS7中安装图形化界面。 1、更新系统 首先,保证系统依赖版本处于最新。 sudo yum update -y2、安装 GNOME 桌面环境 sudo yum groupinstall "GNOME…

Spark的学习-02

Spark Standalone集群的安装 架构&#xff1a;普通分布式主从架构 主&#xff1a;Master&#xff1a;管理节点&#xff1a;管理从节点、接客、资源管理和任务 调度&#xff0c;等同于YARN中的ResourceManager 从&#xff1a;Worker&#xff1a;计算节点&#xff1a;负责利用自己…

Linux相关概念和易错知识点(20)(dentry、分区、挂载)

目录 1.dentry &#xff08;1&#xff09;路径缓存的原因 &#xff08;2&#xff09;dentry的结构 ①多叉树结构 ②file和dentry之间的联系 ③路径概念存在的意义 2.分区 &#xff08;1&#xff09;为什么要确认分区 &#xff08;2&#xff09;挂载 ①进入分区 ②被挂…

《Linux运维总结:基于银河麒麟V10+ARM64架构CPU部署redis 6.2.14 TLS/SSL哨兵集群》

总结:整理不易,如果对你有帮助,可否点赞关注一下? 更多详细内容请参考:《Linux运维篇:Linux系统运维指南》 一、简介 Redis 哨兵模式是一种高可用性解决方案,它通过监控 Redis 主从架构,自动执行故障转移,从而确保服务的连续性。哨兵模式的核心组件包括哨兵(Sentine…

vue3实现一个无缝衔接、滚动平滑的列表自动滚屏效果,支持鼠标移入停止移出滚动

文章目录 前言一、滚动元素相关属性回顾一、实现分析二、代码实现示例&#xff1a;2、继续添加功能&#xff0c;增加鼠标移入停止滚动、移出继续滚动效果2、继续完善 前言 列表自动滚屏效果常见于大屏开发场景中&#xff0c;本文将讲解用vue3实现一个无缝衔接、滚动平滑的列表自…

腾讯云nginx SSL证书配置

本章教程,记录在使用腾讯云域名nginx证书配置SSL配置过程。 一、nginx配置 域名和证书,替换成自己的即可。证书文件可以自定义路径位置。服务器安全组或者防火墙需要开放80和443端口。 server {#SSL 默认访问端口号为 443listen 443 ssl; #请填写绑定证书的域名server_name c…

RabbitMQ的DLX(Dead-Letter-Exchange 死信交换机,死信交换器,死信邮箱)(重要)

RabbitMQ的DLX 1、RabbitMQ死信队列2、代码示例2.1、队列过期2.1.1、配置类RabbitConfig&#xff08;关键代码&#xff09;2.1.2、业务类MessageService2.1.3、配置文件application.yml2.1.4、启动类2.1.5、配置文件2.1.6、测试 2.2、消息过期2.2.1、配置类RabbitConfig2.2.2、…

陪诊问诊APP开发实战:基于互联网医院系统源码的搭建详解

时下&#xff0c;开发一款功能全面、用户体验良好的陪诊问诊APP成为了医疗行业的一大热点。本文将结合互联网医院系统源码&#xff0c;详细解析陪诊问诊APP的开发过程&#xff0c;为开发者提供实用的开发方案与技术指导。 一、陪诊问诊APP的背景与功能需求 陪诊问诊APP核心目…

FreeRTOS 21:递归互斥信号量

递归信号量&#xff0c;见文知义&#xff0c;递归嘛&#xff0c;就是可以重复获取调用的&#xff0c;本来按照信号量的特性&#xff0c;每获取一次可用信号量个数就会减少一个&#xff0c;但是递归则然&#xff0c; 对于已经获取递归互斥量的 任务可以重复获取该递归互斥量&…

算法|牛客网华为机试41-52C++

牛客网华为机试 上篇&#xff1a;算法|牛客网华为机试21-30C 文章目录 HJ41 称砝码HJ42 学英语HJ43 迷宫问题HJ44 SudokuHJ45 名字的漂亮度HJ46 截取字符串HJ48 从单向链表中删除指定值的节点HJ50 四则运算HJ51 输出单向链表中倒数第k个结点HJ52 计算字符串的编辑距离 HJ41 称砝…

mysql5安全审计

安装插件 插件需要严格与数据库版本适配&#xff0c;不然安装过程中会出现问题 解压插件 cd 插件所在路径unzip audit-plugin-mysql-5.7-1.1.7-921-linux-x86_64.zip#查看mysql默认插件目录 mysql> SHOW GLOBAL VARIABLES LIKE plugin_dir;# 将插件移动到mysql默认插件目…

MySQL 安装与配置

MySQL 安装与配置 MySQL 安装 MySQL 一般分为社区版和商业版&#xff0c;我们使用的是社区版&#xff08;因为免费&#xff09;。MySQL 安装的教程在网上有很多&#xff0c;此处就不再进行进行赘述&#xff0c;这里推荐两篇文章&#xff1a;如何在 Windows11 中安装 MySQL 8.…

Flink安装和Flink CDC实现数据同步

一&#xff0c;Flink 和Flink CDC 1&#xff0c; Flink Apache Flink是一个框架和分布式处理引擎&#xff0c;用于对无界和有界数据流进行有状态计算。 中文文档 Apache Flink Documentation | Apache Flink 官方文档 &#xff1a;https://flink.apache.org Flink 中文社区…

车机版 Android Audio 框架笔记

车机版Android Audio 框架涉及的知识点很多&#xff0c;在工作中涉及的功能板块也及其繁杂&#xff0c;后面我会根据工作中的一些实际遇到的实例&#xff0c;逐步拆解 Android Audio的知识点&#xff0c;这里从网上整理了一些思维导图&#xff0c;可以做为未来的一个研究方向&a…