Pytorch实现transformer语言模型

news2024/11/26 17:31:50

转载自:| 03_language_model/02_Transformer语言模型.ipynb | 从头训练Transformer语言模型 |Open In Colab |

Transformer语言模型

本节训练一个 sequence-to-sequence 模型,使用pytorch的
nn.Transformer <https://pytorch.org/docs/master/nn.html?highlight=nn%20transformer#torch.nn.Transformer> module.

PyTorch 1.2 基于论文 Attention is All YouNeed <https://arxiv.org/pdf/1706.03762.pdf> 实现了一个 Transformer 模型, nn.Transformer 模块依赖于 attention 机制实现表达输入和输出文本的关系。

定义模型

基于 nn.TransformerEncoder 模型训练语言模型。

语言模型任务是为句子后跟随单词输出一个似然概率,表征这个单词可能出现的概率。

首先做 embedding,再做 positional encoding, 表征单词位置关系。nn.TransformerEncoder 由多层nn.TransformerEncoderLayer <https://pytorch.org/docs/master/nn.html?highlight=transformerencoderlayer#torch.nn.TransformerEncoderLayer>组成,对于语言模型任务,每个未来可能出现的单词都需要 mask 并预测其概率,为了得到实际的预测单词,nn.TransformerEncoder模型的输出后需要接一个 log-Softmax 函数。

import math
import torch
import torch.nn as nn
import torch.nn.functional as F


class TransformerModel(nn.Module):

    def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
        super(TransformerModel, self).__init__()
        from torch.nn import TransformerEncoder, TransformerEncoderLayer
        self.model_type = 'Transformer'
        self.src_mask = None
        self.pos_encoder = PositionalEncoding(ninp, dropout)
        encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
        self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
        self.encoder = nn.Embedding(ntoken, ninp)
        self.ninp = ninp
        self.decoder = nn.Linear(ninp, ntoken)

        self.init_weights()

    def _generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float(
            '-inf')).masked_fill(mask == 1, float(0.0))
        return mask

    def init_weights(self):
        initrange = 0.1
        self.encoder.weight.data.uniform_(-initrange, initrange)
        self.decoder.bias.data.zero_()
        self.decoder.weight.data.uniform_(-initrange, initrange)

    def forward(self, src):
        if self.src_mask is None or self.src_mask.size(0) != len(src):
            device = src.device
            mask = self._generate_square_subsequent_mask(len(src)).to(device)
            self.src_mask = mask

        src = self.encoder(src) * math.sqrt(self.ninp)
        src = self.pos_encoder(src)
        output = self.transformer_encoder(src, self.src_mask)
        output = self.decoder(output)
        return output

PositionalEncoding 模块包括 relative 和 absolute 位置编码,positional encodings 与 embeddings 的维度是一样的,这样两者可以相加。

class PositionalEncoding(nn.Module):

    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(
            0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)

加载数据

模型训练过程使用来自 torchtext 的Wikitext-2数据集。vocab 基于 train 数据集构建。batchify()函数将数据集排列成列,在将数据划分为大小为`batch_size``的批次后,删除所有剩余的标记。

例如,将字母表作为序列(总长度为26),批量大小为4,我们将字母表分成4个长度为6的序列:
在这里插入图片描述

import os
import torchtext
from torchtext.data.utils import get_tokenizer

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

TEXT = torchtext.legacy.data.Field(init_token='<sos>',
                                   eos_token='<eos>',
                                   lower=True)
train_txt, val_txt, test_txt = torchtext.legacy.datasets.language_modeling.WikiText2.splits(TEXT)
TEXT.build_vocab(train_txt)

TEXT
len(train_txt.examples[0].text)
# 2088628
def batchify(data, bsz):
    data = TEXT.numericalize([data.examples[0].text])
    # Divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    return data.to(device)

batch_size = 20
eval_batch_size = 10
train_data = batchify(train_txt, batch_size)
val_data = batchify(val_txt, eval_batch_size)
test_data = batchify(test_txt, eval_batch_size)

print(train_data.shape)
print(val_data.shape)
# torch.Size([104431, 20])
# torch.Size([21764, 10])

定义生成target文本

bptt = 35
def get_batch(source, i):
    seq_len = min(bptt, len(source) - 1 - i)
    data = source[i:i+seq_len]
    target = source[i+1:i+1+seq_len].view(-1)
    return data, target

试一下模型效果

设置超参:

ntokens = len(TEXT.vocab.stoi)  # the size of vocabulary
emsize = 200  # embedding dimension
nhid = 200  # the dimension of the feedforward network model in nn.TransformerEncoder
nlayers = 2  # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder
nhead = 2  # the number of heads in the multiheadattention models
dropout = 0.2  # the dropout value
model = TransformerModel(ntokens, emsize, nhead, nhid,
                         nlayers, dropout).to(device)

运行模型

import time
criterion = nn.CrossEntropyLoss()
lr = 5.0  # learning rate
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)


def train():
    model.train()  # Turn on the train mode
    total_loss = 0.
    start_time = time.time()
    ntokens = len(TEXT.vocab.stoi)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        data, targets = get_batch(train_data, i)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
        optimizer.step()

        total_loss += loss.item()
        log_interval = 200
        if batch % log_interval == 0 and batch > 0:
            cur_loss = total_loss / log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | '
                  'lr {:02.2f} | ms/batch {:5.2f} | '
                  'loss {:5.2f} | ppl {:8.2f}'.format(
                      epoch, batch, len(
                          train_data) // bptt, scheduler.get_lr()[0],
                      elapsed * 1000 / log_interval,
                      cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()

def evaluate(eval_model, data_source):
    eval_model.eval()  # Turn on the evaluation mode
    total_loss = 0.
    ntokens = len(TEXT.vocab.stoi)
    with torch.no_grad():
        for i in range(0, data_source.size(0) - 1, bptt):
            data, targets = get_batch(data_source, i)
            output = eval_model(data)
            output_flat = output.view(-1, ntokens)
            total_loss += len(data) * criterion(output_flat, targets).item()
    return total_loss / (len(data_source) - 1)

在validation loss最优时保存模型,在每个epoch结束时调整learning rate。

best_val_loss = float("inf")
epochs = 10  # The number of epochs
best_model = None
MODEL_PATH = 'transformer_lm.pth'
for epoch in range(1, epochs + 1):
    epoch_start_time = time.time()
    train()
    val_loss = evaluate(model, val_data)
    print('-' * 89)
    print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
          'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
                                     val_loss, math.exp(val_loss)))
    print('-' * 100)
    if val_loss < best_val_loss:
        best_val_loss = val_loss
        best_model = model
        torch.save(best_model.state_dict(), MODEL_PATH)

    scheduler.step()

best_model.load_state_dict(torch.load(MODEL_PATH))

在这里插入图片描述
Evaluate the model with the test dataset

Apply the best model to check the result with the test dataset.

test_loss = evaluate(best_model, test_data)
print('=' * 89)
print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
    test_loss, math.exp(test_loss)))
print('=' * 89)
import os
os.remove('transformer_lm.pth')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2237484.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ElasticSearch向量检索技术方案介绍

1、背景 在人工智能快速发展的今天&#xff0c;推荐技术、以文搜图、以文搜视频、以图搜图等技术已经得到了广泛的应用&#xff0c;在百度、小红书、抖音、快手等app上随便输入一段文本&#xff0c;搜索结果已不像早些年那么单一&#xff1a;只有一些文字信息&#xff0c;现在的…

算法(第一周)

一周周五&#xff0c;总结一下本周的算法学习&#xff0c;从本周开始重新学习许久未见的算法&#xff0c;当然不同于大一时使用的 C 语言以及做过的简单题&#xff0c;现在是每天一题 C 和 JavaScript&#xff08;还在学&#xff0c;目前只写了一题&#xff09; 题单是代码随想…

华为云镜像仓库基本操作

1. 登陆华为云账户,在搜索框输入"镜像容器",如下图所示: 单击 输入名称后单击确定 创建成功 2. 回到这里 单击这里 获得登陆指令 复制到你的云服务器粘贴,回车后提示"Login Succeeded"表示登陆成功. 3. 还是在"总览"这里,单击这里 跟着复制操作…

【1个月速成Java】基于Android平台开发个人记账app学习日记——第10天,登录状态保持与退出登录

系列专栏链接如下&#xff0c;方便跟进&#xff1a; https://blog.csdn.net/weixin_62588253/category_12821860.html?fromshareblogcolumn&sharetypeblogcolumn&sharerId12821860&sharereferPC&sharesourceweixin_62588253&sharefromfrom_linkhttps://b…

MySQL系列之如何在Linux只安装客户端

导览 前言Q&#xff1a;如何安装一个Linux环境下的MySQL客户端一、准备文件1. 确认Server版本2. 选择Client安装文件 二、下载并安装1. 下载1.1 寻找文件1.2 文件说明 2. 安装2.1 上传至Linux服务器2.2 执行安装 三、连接验证1. 确认远程授权2. 建立远程连接 结语精彩回放 前言…

arcgis pro 学习笔记

二维三维集合在一起&#xff0c;与arcgis不同 一、首次使用&#xff0c;几个基本设置 1.选项——常规里面设置自动保存时间 2.新建工程文件&#xff0c;会自动加载地图&#xff0c;可以在选项里面设置为无&#xff0c;以提高启动效率。 3.设置缓存位置&#xff0c;可勾选每次…

【论文复现】MSA+抑郁症模型总结(三)

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀MSA抑郁症模型 热门研究领域&#xff1a;情感计算的横向发展1. 概述2. 论文地址3. 研究背景4. 主要贡献5. 模型结构和代码6. 数据集介绍7. 性…

‌STAR法则

一&#xff1a;STAR法则 STAR法则是一种简单而实用的表现技巧&#xff0c;常被用于求职过程中的个人经历描述&#xff0c;富有条理性&#xff0c;可以帮助你在职场中脱颖而出。“STAR”分别对应的是situation-task-action-result&#xff0c;通过情境、目标、行动和结果四个方面…

java:使用Multi-Release Jar改造Java 1.7项目增加module-info.class以全面合规Java 9模块化规范

common-java是一个我维护了好多年的一个基础项目,编译目标为Java 1.7 现在整个团队的项目要做Java 9以上的技术迁移准备,就需要对这个在内部各项目中被广泛引用的基础项目进行改造,以适合Java 9的模块化规范。 Automatic-Module-Name Java 9的模块化规范(即Java Platform Mod…

力扣题库——75.颜色分类

这道题采用三路快速排序&#xff0c;快速排序思路看这里快速排序。将数列分为三组&#xff1a;小于基准、等于基准、大于基准。和快排一样&#xff0c;对左右递归进行快速排序。 先将题目简化&#xff0c;如果只有数字0和1&#xff0c;扫描一遍数组&#xff0c;遇到数字1不用管…

python - leetcode【数据结构-算法】-入门/通关手册

python的算法入门/通关/手册 前言&#xff1a;算法通关手册&#xff08;LeetCode&#xff09;-githubHello 算法&#xff1a;python数据结构和算法 - 中文版The Algorithms - Python最后刷题思维: python-leetcode刷题常用语法&#xff1a;变量定义&#xff1a;逻辑与或非和按位…

使用 Flask 和 ONLYOFFICE 实现文档在线编辑功能

提示&#xff1a;CSDN 博主测评ONLYOFFICE 文章目录 引言技术栈环境准备安装 ONLYOFFICE 文档服务器获取 API 密钥安装 Flask 和 Requests 创建 Flask 应用项目结构编写 app.py创建模板 templates/index.html 运行应用功能详解文档上传生成编辑器 URL显示编辑器回调处理 安全性…

EasyUI弹出框行编辑,通过下拉框实现内容联动

EasyUI弹出框行编辑&#xff0c;通过下拉框实现内容联动 需求 实现用户支付方式配置&#xff0c;当弹出框加载出来的时候&#xff0c;显示用户现有的支付方式&#xff0c;datagrid的第一列为conbobox,下来选择之后实现后面的数据直接填充&#xff1b; 点击新增&#xff1a;新…

C# 选择导入文件的路径、导出文件的路径

通过C#代码&#xff0c;调出windows风格的文件选择对话框和存储文件对话框。提供界面来选择文件的位置&#xff0c;并将完整路径以字符串形式返回。 1、选择导入文件&#xff0c;获取其路径 C#通过这段代码将弹出一个文件选择对话框&#xff0c;允许用户选择一个文件&#xff…

数据结构-并查集专题(1)

一、前言 因为要开始准备年底的校赛和明年年初的ACM、蓝桥杯、天梯赛&#xff0c;于是开始按专题梳理一下对应的知识点&#xff0c;先从简单入门又值得记录的内容开始&#xff0c;并查集首当其冲。 二、我的模板 虽然说是借用了jiangly鸽鸽的板子&#xff0c;但是自己也小做…

二手交易平台测试用例设计和执行

&#x1f384;欢迎来到边境矢梦的csdn博文&#x1f384; &#x1f384;追求开源思想和学无止境思想一直在提升技术的路上 &#x1f384; &#x1f308;涉及的领域有&#xff1a;Java、Python、微服务架构和分布式架构思想、基本算法编程&#x1f308; &#x1f386;喜欢的朋友可…

计算机图形学论文 | 多边形中的点可见性快速算法

&#x1f98c;&#x1f98c;&#x1f98c;读论文 &#x1f428;&#x1f428;摘要 针对点的可见性计算这一计算几何中的基础问题&#xff0c;提出一种支持任意查询点的可见多边形快速计算的基于多边形Voronoi图的点可见性算法。以与Voronoi骨架路径对应的Voronoi通道概念&…

Redis 高并发分布式锁实战

目录 环境准备 一 . Redis 安装 二&#xff1a;Spring boot 项目准备 三&#xff1a;nginx 安装 四&#xff1a;Jmeter 下载和配置 案例实战 优化一&#xff1a;加 synchronized 锁 优化二&#xff1a;使用 redis 的 setnx 实现分布式锁 优化三&#xff1a;使用 Lua 脚本…

LLM大模型学习精华系列:VLLM性能优化部署实践——全面加速从推理到部署的流程

训练后的模型会用于推理或者部署。推理即使用模型用输入获得输出的过程&#xff0c;部署是将模型发布到恒定运行的环境中推理的过程。一般来说&#xff0c;LLM的推理可以直接使用PyTorch代码、使用[VLLM]等框架&#xff0c;也可以使用[llama.cpp]等c推理框架。 常见推理方法 G…

【大数据学习 | kafka高级部分】kafka的快速读写

1. 追加写 根据以上的部分我们发现存储的方式比较有规划是对于后续查询非常便捷的&#xff0c;但是这样存储是不是会更加消耗存储性能呢&#xff1f; 其实kafka的数据存储是追加形式的&#xff0c;也就是数据在存储到文件中的时候是以追加方式拼接到文件末尾的&#xff0c;这…