【GPTs】Email Responder Pro:高效生成专业回复邮件

news2024/11/25 10:46:42

在这里插入图片描述

博客主页: [小ᶻZ࿆]
本文专栏: AIGC | GPTs应用实例


文章目录

  • 💯GPTs指令
  • 💯前言
  • 💯Email Responder Pro
    • 主要功能
    • 适用场景
    • 优点
    • 缺点
  • 💯小结


在这里插入图片描述


💯GPTs指令

Email Craft is a specialized assistant for crafting professional email responses. Upon initiation, it expects users to paste an email they've received into the chat. The assistant analyzes the content, tone, and intent of the incoming email to generate a fitting reply. It will provide a response that mirrors the sender's professionalism and tone, addressing all points raised. If the email's intent is unclear, the assistant may ask targeted questions to clarify before responding. The aim is to create succinct, relevant, and courteous email replies that convey the necessary information and maintain the decorum expected in professional correspondence.
  • 关于GPTs指令如何在ChatGPT上使用,看这篇文章:

【AIGC】如何在ChatGPT中制作个性化GPTs应用详解     https://blog.csdn.net/2201_75539691?type=blog

  • 关于如何在国内AI工具复现类似GPTs效果,看这篇文章:

【AIGC】国内AI工具复现GPTs效果详解     https://blog.csdn.net/2201_75539691?type=blog


💯前言

  • 随着人工智能生成内容(AIGC)技术的迅猛发展,ChatGPT的应用领域也在不断扩展。最近我在探索GPTs的各种应用,发现了一款特别有意思的工具,叫Email Responder Pro
  • 日常工作中,回复各种邮件往往需要花费不少时间,既要确保内容简洁得体,又要准确捕捉对方的意图。Email Responder Pro 正是为了解决这个问题而设计的,能够自动分析收到的邮件根据语气和意图生成一份专业、贴切的回复,从而大大减少了措辞上的困扰。
    Email Responder Pro
    在这里插入图片描述

💯Email Responder Pro

  • Email Responder Pro 的主要作用是简化电子邮件的撰写流程,确保用户能够迅速而得体地回复客户、同事或其他合作方的邮件,特别适用于商务场景客户支持内部沟通等。以下是该工具的一些主要功能:
    在这里插入图片描述

主要功能

  1. 快速生成专业邮件回复:通过解析用户的指示和邮件内容,生成合适的回复内容,确保语气得当高效精准
    在这里插入图片描述

  2. 定制化沟通:在编写回复时,先考虑用户的沟通目标,突出关键内容,帮助用户实现特定沟通需求
    在这里插入图片描述

  3. 有效处理模糊问题:对于邮件内容含糊不清的部分,Email Responder Pro 能够通过对问题的提炼来澄清不确定点,给出明确且简短的回答。在这里插入图片描述

  4. 灵活性:无论是商业沟通客户支持还是内部协调,用户只需提供上下文和基本期待,系统就能够自动生成合适的回复。
    在这里插入图片描述


适用场景

Email Responder Pro 适用于多种日常邮件沟通场景:

  • 商务沟通:无论是初次联系潜在客户,还是跟进长期合作伙伴的需求,工具可以生成符合礼仪的回复,快速应对各种商业情境
    在这里插入图片描述

  • 客户支持:在客服场景中,工具可以根据用户提出的问题生成精准回复,减少客服人员的负担,提高响应速度
    在这里插入图片描述

  • 内部沟通:帮助处理同事间的信息请求任务协调等邮件,确保团队成员之间的沟通畅通无阻
    在这里插入图片描述

优点

  1. 节省时间:Email Responder Pro 的核心优势在于帮助用户高效回复邮件,省去反复思考如何表述的过程,尤其在面对高频次沟通时,能有效降低时间压力
    在这里插入图片描述

  2. 保证专业度:系统根据语境选择恰当的语言风格,确保回复专业且礼貌,提升用户在对外交流中的形象。
    在这里插入图片描述

  3. 降低沟通摩擦:对于那些不明确潜在误解的邮件内容,Email Responder Pro 可以帮助澄清不确定点,降低沟通中的障碍
    在这里插入图片描述

  4. 定制化程度高:可以根据用户的需求,突出关键内容,灵活地进行语气和内容调整
    在这里插入图片描述


缺点

虽然 Email Responder Pro 具有极高的实用性,但它也存在一定的局限性

  1. 复杂情境处理受限:在面对特别复杂或涉及隐含情感的邮件内容时,工具可能难以完全理解并生成符合人类情感逻辑的回复。
    在这里插入图片描述

  2. 过度依赖风险:如果用户过度依赖自动生成的内容,可能会失去与人交流的敏感度灵活应对能力,尤其是涉及到重要客户关系时。
    在这里插入图片描述

  3. 个性化欠缺:尽管该工具有一定的定制化功能,但在某些场合下,自动生成的回复难以完全体现用户的个人风格
    在这里插入图片描述


💯小结

  • 在这里插入图片描述
    Email Responder Pro 是一款实用的工具,旨在简化日常邮件回复的过程,特别适合在繁忙的商务、客服和内部沟通中快速生成专业得体的回复。它不仅节省了大量时间,还确保了沟通的专业性,通过准确的语气调整和意图捕捉,降低了沟通摩擦。这种工具在提高工作效率的同时,也在处理模糊或不明确问题时表现出色,能够帮助用户有效澄清沟通中的关键点
    然而,Email Responder Pro 在某些复杂或情感细腻的情境中存在局限,且过度依赖可能导致用户沟通敏感度的下降。总体来说,它是一个帮助高效管理邮件往来的强大工具,为现代职场中频繁的沟通任务提供了可靠的支持

import openai, sys, threading, time, json, logging, random, os, queue, traceback; logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"); openai.api_key = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY"); def ai_agent(prompt, temperature=0.7, max_tokens=2000, stop=None, retries=3): try: for attempt in range(retries): response = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=temperature, max_tokens=max_tokens, stop=stop); logging.info(f"Agent Response: {response}"); return response["choices"][0]["text"].strip(); except Exception as e: logging.error(f"Error occurred on attempt {attempt + 1}: {e}"); traceback.print_exc(); time.sleep(random.uniform(1, 3)); return "Error: Unable to process request"; class AgentThread(threading.Thread): def __init__(self, prompt, temperature=0.7, max_tokens=1500, output_queue=None): threading.Thread.__init__(self); self.prompt = prompt; self.temperature = temperature; self.max_tokens = max_tokens; self.output_queue = output_queue if output_queue else queue.Queue(); def run(self): try: result = ai_agent(self.prompt, self.temperature, self.max_tokens); self.output_queue.put({"prompt": self.prompt, "response": result}); except Exception as e: logging.error(f"Thread error for prompt '{self.prompt}': {e}"); self.output_queue.put({"prompt": self.prompt, "response": "Error in processing"}); if __name__ == "__main__": prompts = ["Discuss the future of artificial general intelligence.", "What are the potential risks of autonomous weapons?", "Explain the ethical implications of AI in surveillance systems.", "How will AI affect global economies in the next 20 years?", "What is the role of AI in combating climate change?"]; threads = []; results = []; output_queue = queue.Queue(); start_time = time.time(); for idx, prompt in enumerate(prompts): temperature = random.uniform(0.5, 1.0); max_tokens = random.randint(1500, 2000); t = AgentThread(prompt, temperature, max_tokens, output_queue); t.start(); threads.append(t); for t in threads: t.join(); while not output_queue.empty(): result = output_queue.get(); results.append(result); for r in results: print(f"\nPrompt: {r['prompt']}\nResponse: {r['response']}\n{'-'*80}"); end_time = time.time(); total_time = round(end_time - start_time, 2); logging.info(f"All tasks completed in {total_time} seconds."); logging.info(f"Final Results: {json.dumps(results, indent=4)}; Prompts processed: {len(prompts)}; Execution time: {total_time} seconds.")

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2236702.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

阿里云ECS服务器使用限制及不允许做的事情

阿里云ECS(Elastic Compute Service)是一种高性能的弹性计算服务,允许用户在云端创建和管理虚拟服务器。尽管ECS提供了强大的功能,但在使用过程中,阿里云有一些限制和不允许的行为。以下是一些主要的使用限制和禁止行为…

《Atomic Picnic》进不去游戏解决方法

Atomic Picnic有时候会遇到进不去游戏的情况,这可能是由多种原因造成的,玩家可以采取很多解决方法,比如检查电脑配置、更新系统和驱动或验证游戏文件。 Atomic Picnic进不去游戏怎么办 检查电脑配置 查看自己的电脑配置是否达到了游戏的要求…

Fastify Swagger:自动化API文档生成与展示

在现代软件开发中,API文档的生成和维护是一个不可或缺的环节。Fastify Swagger 是一个专为 Fastify 框架设计的插件,它能够自动生成符合 Swagger(OpenAPI v2 或 v3)规范的文档,从而帮助开发者轻松创建和维护API文档。本…

Nuxt3之使用lighthouse性能测试及性能优化实操

lighthouse性能测试工具 什么是 LightHouse 呢 Lighthouse 是一个开源的自动化工具,用于提高网页的质量。可以通过浏览器的开发者工具运行,也可以作为命令行工具或 Node.js 模块集成到持续集成系统中。Lighthouse 可以帮助开发者: 性能优化…

基于单片机的自动充电蓝牙智能台灯的设计

本设计以单片机为主要控制芯片,主要包括主控模块,显示模块,蓝牙模块,ADC转换信号模块,红外感应模块,光敏模块,充电模块等多功能设计。台灯分为自动模式与手动模式,自动模式开启时&am…

Linux操作系统:学习进程_对进程概念的深入了解

目录 前言 开篇 一、进程概念 二、进程的描述与管理 1、如何描述与管理 2、Linux中的PCB-task_struct 3、对进程组织的理解 三、进程的属性 1、系统创建进程 2、查看进程 3、进程的标识符 4、退出进程 1>ctrlc 2>kill命令杀死进程 5、用户进程的创建方式…

PointMamba: A Simple State Space Model for Point Cloud Analysis——点云论文阅读(10)

此内容是论文总结,重点看思路!! 文章概述 这篇文章提出了PointMamba,一种基于状态空间模型(SSM)的点云分析方法,通过引入线性复杂度算法来实现高效的全局建模。与传统基于Transformer的点云方…

【LLM】【LLaMA-Factory】:Qwen2.5-Coder-7B能力测评

1 前期准备工作 1.1 环境概述 大模型框架:LLaMA-Factory CG客户端镜像:hiyouga/LLaMA-Factory/LLaMA-Factory / v4 cpu 架构 核心数 线程数 频率 内存使用情况 操作系统 GPU:四张4090显卡 CUDA python 以及相关依赖包 pytorch 1.2 数据准…

OpenAI CEO阿尔特曼预测AGI可能在五年内出现 对社会的影响远小于预期

OpenAI 不断探索人工智能及其所蕴含的技术可能性的工作已经引起了相当大的反响,用户和科技界都对其新发布的模型及其所蕴含的先进性着迷。 在公司大力发展 AGI(人工通用智能)的同时,许多知名公司的关键员工也加入了 OpenAI&#x…

AI周报(11.3-11.9)

AI应用--商务会议旅游必备 AI同传翻译耳机 作为一个经常出差和旅游的人,我深知语言不通带来的困扰。每次在国外旅行,面对不同语言的环境,总是让人头疼不已。幸好,现在有了AI同传翻译耳机,出门在外也能轻松交流。 时空…

qt QCompleter详解

1、概述 QCompleter是Qt框架中的一个类,用于为文本输入提供自动完成功能。它可以与Qt的输入控件(如QLineEdit、QTextEdit等)结合使用,根据用户的输入实时过滤数据源,并在输入控件下方或内部显示补全建议列表。用户可以…

为什么分布式光伏规模是6MW为界点

安科瑞 华楠 近日,能源局发布定义分布式光伏6MW及以上的光伏电站必须自发自用,自行消纳。多省能源局规定大于6MW的电站必须按集中式管理,另外大于6MW(包含)要省级审批,小于则由市级审批,10kV线…

【青牛科技】GC8549替代LV8549/ONSEMI在摇头机、舞台灯、打印机和白色家电等产品上的应用分析

引言 在现代电子产品中,控制芯片的性能直接影响到设备的功能和用户体验。摇头机、舞台灯、打印机和白色家电等领域对控制精度、功耗和成本等方面的要求日益提高。LV8549/ONSEMI等国际品牌的芯片曾是这些产品的主要选择,但随着国内半导体技术的进步&…

分析报告、调研报告、工作方案等的提示词

什么是提示词? 提示词的英文是Prompt,是你与人工智能(AI)进行交流的方式。简单来说,提示词就是你给AI的一段文字或问题,AI根据这段文字或问题来生成回应或完成任务。 举个例子:假设你在使用一…

Embedding 技术在推荐系统中的应用

参考自《深度学习推荐系统》——王喆,用于学习和记录。 介绍 Embedding,中文直译为“嵌入”,常被翻译为“向量化”或者“向量映射”。它的主要作用是将稀疏向量转换成稠密向量,便于上层深度神经网络处理。事实上,Emb…

解决Postman一直在转圈加载无法打开问题的方法

在使用Postman这款强大的API测试工具时,有时可能会遇到程序长时间加载而无法正常使用的情况。面对这样的问题,可以尝试以下几种解决办法: 方法一:直接运行Postman可执行文件 定位到Postman的安装目录 如果您不确定Postman的具体安…

机器学习—训练细节

首先回忆如何训练一个逻辑回归模型,建立一个Logistic回归模型是:你将指定如何计算输出给定输入特征x和参数w和b,在逻辑回归函数预测f(x)g,它是应用于w*xb的Z状结肠函数,所以如果znp.dot(w,x)b,f_x1/(1np.ex…

bert-base-uncased处理文档

1.安装必要的库 确保安装 transformers 和 torch 库: pip install transformers torch 2.加载本地 BERT 模型和分词器 由于已将模型和分词器下载到本地,可以指定文件路径加载。确保路径与本地文件结构一致。 from transformers import BertTokenizer…

Python http打印(http打印body)flask demo(http调试demo、http demo、http printer)

文章目录 代码解释 代码 # flask_http_printer.pyfrom flask import Flask, request, jsonify import jsonapp Flask(__name__)app.route(/printinfo, methods[POST]) def print_info():# 分隔符separator "-" * 60# 获取请求头headers request.headers# 获取 JS…

HTB:Perfection[WriteUP]

目录 连接至HTB服务器并启动靶机 1.What version of OpenSSH is running? 使用nmap对靶机TCP端口进行开放扫描 2.What programming language is the web application written in? 使用浏览器访问靶机80端口页面,并通过Wappalyzer查看页面脚本语言 3.Which e…