大模型自动构建知识图谱/GraphRAG/neo4j可视化/问答系统探索

news2024/11/8 6:05:29

一、一些参考资料留档

视频教程:

【官方来源】neo4j使用大模型构建知识图谱的原理解析

最详细GraphRAG教程-环境配置、本地部署流程、本地数据库导入、neo4j构建知识图谱

博客:

基于Neo4j知识图谱的构建及可视化_neo4j知识图谱可视化-CSDN博客探究使用大模型进行知识图谱构建以及问答_大模型抽取知识图谱-CSDN博客 [1]

知识图谱与大模型 Part 1:使用大型语言模型自动进行知识图谱构建_大模型构建知识图谱-CSDN博客    (这篇没有找到原英文论文)​​​​​​

如何用大语言模型自动构建知识图谱_利用大语言模型构建知识图谱-CSDN博客

文章/论文:

[1]

LLMs for knowledge graph construction and reasoning: recent capabilities and future opportunities

二、思考探索

1、传统的思路是人工构建知识图谱,一方面利用其增强LLM,另一方面是通过LLM进行前端生成输出,进行更好地语义交互。

2、基于思路1,更注重知识图谱本身的含金量,需要的是算力不多的小模型

3、现在很多思路可能在于直接利用LLM构建KG,那么对LLM的性能就提出了要求。同时需要对比实验LLM→KG和单纯的KG谁的准确性更高、性价比更高。是否存在这样的判断准则?

4、以前KG的主要作用是可以为搜索引擎提供支撑,现在很多人搜问题直接用LLM,是不是也在一定程度上说明了KG的被替代性?

5、LLM因为其知识的丰富性,在推理上可能表现更出色,但是KG又有特殊的优势

优缺点比较

三、初步途径

思路一:直接利用大模型来构建知识图谱,靠大模型自动化挖掘非结构化数据中的关系,再结合结构化的数据,构建知识图谱,后期数据持续更新、推理。同时在前端使用大模型的对话功能,用户提问时就可以根据知识图谱给出相应答案。

思路二:人工构建知识图谱,使用小模型GraphRAG的方式,将知识谱图作为一个外挂知识库使用,减轻模型的负担,模型仅作为前端查询生成。

优缺点分析:

思路一:

优点:

  1. 自动化挖掘: 大模型如GPT-4等可以从非结构化文本中自动识别实体和关系,从而减少人工构建的工作量,尤其在处理大量文档时,自动化能够显著提高效率。
  2. 灵活性高: 这种方式在面对新的数据或不规则信息时具有较好的适应性,能够快速地调整和扩展知识图谱。
  3. 提升问答系统的效果: 通过大模型直接与知识图谱结合,可以为用户提供更加灵活和准确的回答,尤其是跨领域的知识问答。

缺点:

  1. 计算资源消耗大: 大模型尤其是像GPT系列这类大规模模型,对于计算资源的需求较高。如果你的数据量庞大或实时性要求高,可能需要额外的计算能力来支撑。
  2. 自动化准确性问题: 大模型对非结构化数据的处理并不总是完全准确,特别是在关系抽取和实体识别时,可能会出现误差。这需要对模型进行定期的验证和更新。
  3. 复杂度较高: 将大模型与知识图谱结合并进行端到端的自动化构建,需要解决许多技术细节,比如如何处理数据融合、如何保持图谱的一致性等。

思路二:

优点:

  1. 高可控性: 人工构建知识图谱可以确保图谱的准确性和质量,尤其是在企业领域知识较为复杂或重要时,人工设计可以更精确地把控关系的正确性。
  2. 资源需求低: 使用小模型(如GraphRAG)作为查询接口,相较于使用大模型,计算资源的消耗会小得多,适合对计算成本有较高要求的应用场景。
  3. 图谱结构稳定: 由于知识图谱是提前构建好的,所以它的结构相对稳定,不容易发生像大模型那样的泛化误差,确保了图谱在长时间内的有效性。

缺点:

  1. 人工成本高: 如果知识图谱涉及的数据量庞大,人工构建的工作量可能会非常大,而且需要不断更新和维护,增加了工作量。
  2. 灵活性差: 与思路一相比,这种方式的灵活性较差,尤其是当新数据(如新文档)出现时,需要再次人工添加进知识图谱,更新频繁。
  3. 推理能力较弱: 小模型(如GraphRAG)虽然轻量级,但相对而言,其推理能力和处理复杂问题的能力比大模型要弱,可能无法充分发挥知识图谱的潜力。

综合下来看,好像可以实现先使用人工构建知识图谱作为基础框架,确保基础知识的稳定性和准确性。在此基础上,使用大模型来自动化挖掘新的关系和知识,动态更新知识图谱。大模型可以在前端进行实时查询和推理,而知识图谱作为支持层提供结构化的信息。但是中间有很多连接性的工作,感觉坑不小。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2235603.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

鉴源实验室·加密技术在汽车系统中的应用

随着汽车技术的快速发展,现代汽车已经不再是简单的交通工具,而是融合了多种智能功能的移动终端。无论是自动驾驶、车联网(V2X),还是车内娱乐系统,数据传输和存储已经成为汽车生态系统中的关键环节。然而&am…

UE5.1 控制台设置帧率

仅个人记录,未经过严格验证。 也可通过控制台命令蓝图节点,在运行时执行 锁帧: 0->120帧 1-》60帧

SpringCloud Sentinel 服务治理详解

雪崩问题 微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩。 雪崩问题产生的原因: 微服务相互调用,服务提供者出现故障或阻塞。服务调用者没有做好异常处理,导致自身故障。调用链中的…

前端基础-html-注册界面

&#xff08;200粉啦&#xff0c;感谢大家的关注~ 一起加油吧~&#xff09; 浅浅分享下作业&#xff0c;大佬轻喷~ 网页最终效果&#xff1a; 详细代码&#xff1a; ​ <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"…

《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(2)

《TCP/IP网络编程》学习笔记 | Chapter 4&#xff1a;基于TCP的服务器端/客户端&#xff08;2&#xff09; 《TCP/IP网络编程》学习笔记 | Chapter 4&#xff1a;基于TCP的服务器端/客户端&#xff08;2&#xff09;回声客户端的完美实现回声客户端的问题回声客户端问题的解决方…

使用 FFmpeg 进行音视频转换的相关命令行参数解释

FFmpeg 是一个强大的多媒体框架&#xff0c;能够解码、编码、转码、录制、播放以及流化几乎所有类型的音频和视频。它广泛应用于音视频处理任务中&#xff0c;包括格式转换、剪辑、合并、水印添加等。本文中简鹿办公将介绍如何使用 FFmpeg 进行一些常见的音视频转换任务。 安装…

ctfshow(316)--XSS漏洞--反射性XSS

Web316 进入界面&#xff1a; 审计 显示是关于反射性XSS的题目。 思路 首先想到利用XSS平台解题&#xff0c;看其他师傅的wp提示flag是在cookie中。 当前页面的cookie是flagyou%20are%20not%20admin%20no%20flag。 但是这里我使用XSS平台&#xff0c;显示的cookie还是这样…

从0开始学习Linux——网络配置

往期目录&#xff1a; 从0开始学习Linux——简介&安装 从0开始学习Linux——搭建属于自己的Linux虚拟机 从0开始学习Linux——文本编辑器 从0开始学习Linux——Yum工具 从0开始学习Linux——远程连接工具 从0开始学习Linux——文件目录 上一个教程中&#xff0c;我们了解了…

python在word中插入图片

本文讲解python如何在word文档中插入图片&#xff0c;以及指定插入图片的段落。 1、在新建的word文档中插入图片 import win32com.client as win32 from win32com.client import constants # 1&#xff09;打开word应用程序 doc_app win32.gencache.EnsureDispatch(Word.App…

亚信安全新一代WAF:抵御勒索攻击的坚固防线

近年来&#xff0c;勒索攻击已成为黑客的主要攻击手段。新型勒索攻击事件层出不穷&#xff0c;勒索攻击形势愈发严峻&#xff0c;已经对全球制造、金融、能源、医疗、政府组织等关键领域造成严重危害。如今&#xff0c;勒索攻击手段日趋成熟、攻击目标愈发明确&#xff0c;模式…

Linux qt下是使用搜狗輸入發

1.下载一个编译好的包 https://github.com/sixsixQAQ/fcitx5-qt 出处&#xff1a;这里 2.根据QT5&#xff0c;或者QT6选择下载 3.使用 把那个libfcitx5platforminputcontextplugin.so放到下面的路径&#xff1a; <你的Qt安装目录>/gcc_64/plugins/platforminputcontex…

linux命令详解,账号相关

账号相关 用户账号数据库相关文件 /etc/password 存储系统中所有用户账户的基本信息 /etc/shadow 用于存储用户账户的密码和其他安全相关信息 /etc/gshdow 用于存储用户组的密码和其他安全相关信息/etc/passwd: username:password:UID:GID:GECOS:home_directory:shell字段解…

Sentinel — 微服务保护

微服务架构将大型应用程序拆分为多个小而独立的服务&#xff0c;每个服务可以独立部署和扩展。然而&#xff0c;微服务系统需要面对的挑战也随之增加&#xff0c;例如服务之间的依赖、分布式环境下的故障传播和安全问题。因此&#xff0c;微服务保护措施是确保系统在高并发、资…

使用Qt制作一个流程变更申请流程进度以及未读消息提醒

1.1加载界面&#xff1a; 界面要素&#xff1a; 成员信息 变更位置申请 接受消息列表 根据角色加载对应界面。 1.2发起变更申请&#xff1a; 用户点击“发起变更申请”按钮。变更申请对话框可编辑&#xff0c;用户填写申请信息&#xff1a; 申请方&#xff08;自动填充&…

Markdown 全面教程:从基础到高级

Markdown 全面教程&#xff1a;从基础到高级 Markdown 是一种轻量级的标记语言&#xff0c;它的设计目标是使书写和阅读文档变得简单而直观。无论是撰写博客、编写文档还是创建 README 文件&#xff0c;Markdown 都是一个非常实用的工具。 目录 Markdown 简介Markdown 的基…

无插件H5播放器EasyPlayer.js关于硬解码和软解码的详细介绍

在当今这个多媒体内容日益丰富的时代&#xff0c;视频播放体验的重要性不言而喻.EasyPlayer.js H5播放器作为一款专为现代Web环境设计的播放器&#xff0c;它不仅提供了流畅的播放体验&#xff0c;还特别注重性能优化。EasyPlayer.js支持多种解码方式&#xff0c;包括硬解码和软…

Multi‐modal knowledge graph inference via media convergenceand logic rule

摘要 媒体融合通过处理来自不同模式的信息并将其应用于不同的领域来实现。传统的知识图很难利用多媒体特征&#xff0c;因为从其他模态引入大量信息降低了表示学习的有效性&#xff0c;并降低了知识图推理的有效性。为了解决这一问题&#xff0c;提出了一种基于媒体融合和规则…

大模型应用编排工具Dify二开之工具和模型页面改造

1.前言 简要介绍下 dify&#xff1a; ​ 一款可以对接市面上主流大模型的任务编排工具&#xff0c;可以通过拖拽形式进行编排形成解决某些业务场景的大模型应用。 背景信息&#xff1a; ​ 环境&#xff1a;dify-0.8.3、docker-21 ​ 最近笔者在做 dify的私有化部署和二次…

【数学】通用三阶矩阵特征向量的快速求法 超简单!!!

目录 三个定理1、3个特征值&#xff08;即根互不相等&#xff09;例题实践2、2个特征值&#xff08;即有一个双重根&#xff09;3、1个特征值&#xff08;即有一个三重根&#xff09;定理证明 三个定理 本定理适用于 所有三阶矩阵 的特征向量求法&#xff01; 1、3个特征值&…

MapReduce 的 Shuffle 过程

MapReduce 的 Shuffle 过程指的是 MapTask 的后半程&#xff0c;以及ReduceTask的前半程&#xff0c;共同组成的。 从 MapTask 中的 map 方法结束&#xff0c;到 ReduceTask 中的 reduce 方法开始&#xff0c;这个中间的部分就是Shuffle。是MapReduce的核心&#xff0c;心脏。 …