ViT面试知识点

news2024/11/7 3:57:42

文章目录

  • VIT
  • CLIP
  • Blip
  • SAM
  • LSeg
  • Fast Transformer
  • YOLO系列问题


BatchNorm是对一个batch-size样本内的每个特征做归一化,LayerNorm是对每个样本的所有特征做归一化。
d'sds
Layer Normalization(层归一化,简称LayerNorm)是一种在深度学习中常用的归一化技术,它与Batch Normalization(批归一化)不同,LayerNorm是在单个样本的特征上进行归一化,而不是在批次上。LayerNorm的目的是减少模型训练过程中的内部协变量偏移(Internal Covariate Shift),即减少模型参数更新时的规模和方向的变化,从而加速收敛并提高模型性能。

LayerNorm的计算步骤如下:
在这里插入图片描述
在这里插入图片描述

LayerNorm的优势在于它不依赖于批次的大小,因此可以很好地应用于RNNs和LSTMs等序列模型中,这些模型的批次大小可能会变化。此外,LayerNorm也有助于减少模型对初始化权重的敏感性,从而提高模型的稳定性和性能。

VIT

介绍一下Visual Transformer?
介绍一下自注意力机制?
介绍一下VIT的输出方式
介绍一下VIT做分割任务

VIT是将NLP的transformer迁移到cv领域,他的整个流程大概如下:将一张图片切成很多个patch,每个patch为16x16的大小,然后将这些patch拉直,并添加一个位置编码,然后将这个向量序列输入到标准的transformer encoder中,这里的transformer encoder由多个transformer 标准块构成,包括multi head attention 然后相加并进行层归一化,以及后面的FFN(前馈神经网络)

FFN层就是feed forward层。他本质上就是一个两层的MLP,第一层会将输入的向量升维,第二层将向量重新降维。这样子就可以学习到更加抽象的特征。

Transformer encoder 的输出和输入一样,有多个输出,我们应该拿哪个输出去做最后的分类呢?所以说再次借鉴BERT,用extra learnable embedding,也就是一个特殊字符叫cls,叫分类字符,它也有一个位置编码0,因为所有的token都在跟所有的token做交互信息,所以第一个class embedding 可以从别的embedding里面学到有用的信息,从而我们只需要根据它的输出做一个MLP Head,做最后的判断。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

class Attention(nn.Module):
    def __init__(self,
                 dim,   # 输入token的dim
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop_ratio=0.,
                 proj_drop_ratio=0.):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_ratio)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop_ratio)

    def forward(self, x):
        # [batch_size, num_patches + 1, total_embed_dim]
        B, N, C = x.shape

        # qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
        # reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
        # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        # @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        # transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size, num_patches + 1, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

CLIP

介绍一下CLIP
CLIP的网络结构
CLIP的损失函数
CLIP的优势
CLIP为什么可以做零样本学习
CLIP的不足?
1、文本对过于简单,只能实现对图片的简单描述,当图片场景复杂时,CLIP的图文匹配效果不佳。
2、结构化表征能力弱,例如:黑色帽子白衬衫和白帽子黑衬衫,他们的在CLIP中得到的语义相似度都会很高。
3、CLIP的训练依赖大量的优质文本对。

CLIP(Contrastive Language-Image Pre-Training)模型是一种多模态预训练神经网络,该模型的核心思想是使用大量图像和文本的配对数据进行预训练,以学习图像和文本之间的对齐关系,CLIP模型有两个模态,一个是文本模态,一个是视觉模态:

  1. Text Encoder:用于将文本转换为低维向量表示Embeding。
  2. Image Encoder:用于将图像转换为类似的向量表示Embedding。

在预测阶段,CLIP模型通过计算文本和图像向量之间的余弦相似度来生成预测。这种模型特别适用于零样本学习任务,即模型不需要看到新的图像或文本的训练示例就能进行预测。CLIP模型在多个领域表现出色,如图像文本检索、图文生成等。
在这里插入图片描述
模型中使用visual_embedding 叉乘 text_embedding,得到一个[N, N]的矩阵,那么对角线上的值便是成对特征内积得到的,如果visual_embedding和对应的text_embedding越相似,那么它的值便越大。

选取[N, N]矩阵中的第一行,代表第1个图片与N个文本的相似程度,其中第1个文本是正样本,将这一行的标签设置为1,那么就可以使用交叉熵进行训练,尽量把第1个图片和第一个文本的内积变得更大,那么它们就越相似。
[交叉熵]:一种用于衡量两个概率分布之间差异的度量方式。其定义为
在这里插入图片描述
,其中P(x)为实际概率分布,Q(x)为预测概率分布。
交叉熵刻画的是两个概率分布的距离,也就是说交叉熵值越小(相对熵的值越小),两个概率分布越接近

Blip

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

SAM

在NLP的领域中,存在一些被称为基础模型的模型,他们通过预测句子中的下一个词进行训练,称为顺序预测。通过这些基础的模型可以轻松地适应到其他的NLP的任务上,比如翻译或者是文本摘要,这种实现方式也可以称为是零样本迁移学习。其中比较著名的方法就是prompting,通过聊天的形式来进行交互。NLP有效的前提是网络上存在大量的文本,而对于序列的预测,比如说知道一些词然后预测后面的词是什么,这种不需要人工标注的标签就能完成训练。但是问题转化到计算机视觉的任务上,尽管网络上存在数十亿的图像,但是由于缺乏有效标注的mask的信息,所以在计算机视觉的任务上建立这样模型成为了挑战。开门见山,作者首先提出了三个问题。
在这里插入图片描述

针对上面提出的3个问题,作者给出的解决方案。作者的目标是通过引入三个相互关联的组件来构建一个分割的基础模型:一个可提示的分割任务、一个通过数据标注提供动力并能够通过提示工程实现一系列任务零样本迁移的分割模型(SAM),以及一个用于收集我们的数据集SA-1B(包含超过10亿个掩码)的数据引擎。

可提示的分割任务和实际使用目标对模型架构施加了约束。具体而言,模型必须支持灵活的提示,需要以分摊的实时方式计算掩码以允许交互式使用,并且必须具备处理歧义的能力。令人惊讶的是,我们发现一个简单的设计就能满足所有这三个约束条件:一个强大的图像编码器计算图像嵌入,一个提示编码器嵌入提示,然后将这两个信息源在一个轻量级的掩码解码器中结合起来,预测分割掩码。

图像的编码器:

图像编码器。出于可扩展性和强大的预训练方法的考虑,我们使用了一个经过最小调整以适应高分辨率输入的MAE预训练视觉Transformer(ViT)[33][62]。图像编码器每张图像运行一次,并可在提示模型之前应用,这里使用的mae来进行预训练。

提示词的编码器:

提示编码器。我们考虑两组提示:稀疏提示(点、框、文本)和密集提示(掩码)。我们用位置编码[95]来表示点和框,并将其与每种提示类型的学习嵌入和来自CLIP的现成文本编码器中的自由格式文本相加。密集提示(即掩码)使用卷积进行嵌入,并与图像嵌入进行逐元素相加。

掩码的解码器:

掩码解码器能够高效地将图像嵌入、提示嵌入和输出标记映射到一个掩码。采用了一个经过修改的Transformer解码器块,后面跟着一个动态掩码预测头。我们修改后的解码器块在两个方向上(从提示到图像嵌入和从图像嵌入到提示)使用提示自注意力和交叉注意力来更新所有嵌入。运行两个块之后,我们对图像嵌入进行上采样,并且一个多层感知机(MLP)将输出标记映射到一个动态线性分类器,然后该分类器计算图像每个位置的前景掩码概率。

解决歧义的问题:

解决歧义问题。如果给定一个模糊的提示,模型将平均多个有效的掩码作为一个输出。为了解决这个问题,我们修改了模型,使其能够针对单个提示预测多个输出掩码(见图3)。我们发现,3个掩码输出足以处理大多数常见情况(嵌套掩码通常最多有三层:整体、部分和子部分)。比如上面的剪刀的图像,其实由三个有效的掩码。

我们的数据引擎有三个阶段:辅助手动、半自动和全自动。在第一阶段,SAM辅助标注者标注掩码,类似于经典的交互式分割设置。在第二阶段,SAM可以通过提示可能的对象位置自动为一部分对象生成掩码,而标注者则专注于标注剩余的对象,这有助于增加掩码的多样性。在最后阶段,我们使用前景点的常规网格提示SAM,平均每张图像生成约100个高质量掩码。

介绍一下SAM模型?
SAM的创新性在哪里?
详细介绍一下SAM的网络结构
SAM的加速和量化你有了解吗?
SAM的应用场景

LSeg

在这里插入图片描述
Image Encoder : dense prediction transformers (DPT)

Fast Transformer

在这里插入图片描述
在这里插入图片描述

分别对encoder only decoder only encoder-decoder3类transformer模型进行加速优化

对encoder only主要是做算子融合,因为encoder涉及到很大小算子的计算,包括 transpose、concat 这些简单算子以及softmax(涉及到ex指数计算)layernorm(均值方差)gelu(tanh非线性计算)等非线性计算,

YOLO系列问题

前处理和后处理具体包括什么?
前处理你是如何加速的?
YOLOv8的改进点有哪些?

Yolov8换成了目前主流的解耦头结构(Decoupled-Head),将分类和检测头分离,同时也从Anchor-Based换成了Anchor-Free。

Yolov8使用C2f模块代替C3模块。具体改进如下:
第一个卷积层的Kernel size从6×6改为3x3。
所有的C3模块改为C2f模块,如下图所示,多了更多的跳层连接和额外Split操作。
Block数由C3模块3-6-9-3改为C2f模块的3-6-6-3。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2234734.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

了解数据库并发产生的问题

在数据库管理系统中,并发控制是一个至关重要的方面。随着多个用户或进程同时访问和修改数据库中的数据,如果没有适当的并发控制机制,就可能导致数据不一致、丢失更新、脏读、不可重复读和幻读等问题。在单用户系统中,数据库操作是…

qt QFontDialog详解

1、概述 QFontDialog 是 Qt 框架中的一个对话框类,用于选择字体。它提供了一个可视化的界面,允许用户选择所需的字体以及相关的属性,如字体样式、大小、粗细等。用户可以通过对话框中的选项进行选择,并实时预览所选字体的效果。Q…

【JavaSE】(2) 方法

一、认识方法 1. 方法的定义 修饰符 返回类型 方法名(形参类型 形参名, ......){......return 返回值; } 示例代码: 2. 方法的作用 增强代码的可复用性。(避免重复造轮子)增强代码的易管理性。(改方法就行,不用到处…

享元模式及其运用场景:结合工厂模式和单例模式优化内存使用

介绍 享元模式(Flyweight Pattern)是一种结构型设计模式,它通过共享对象来减少内存使用,尤其是对于大量相似对象的场景。享元模式通常与工厂模式和单例模式结合使用,从而有效地控制和复用对象的创建。在享元模式中&am…

【RabbitMQ】03-交换机

1. 交换机 2. Fanout交换机 广播。生产者向exchange发消息 SpringBootTest public class SpringAmqpTest {Autowiredpublic RabbitTemplate rabbitTemplate;Testvoid testSimple() {String exchangName "hmall.fabout";rabbitTemplate.convertAndSend(exchangName…

【赵渝强老师】安装部署Memcached

Memcached是一个高性能的分布式的内存对象缓存系统。通过使用Memcached可以支持高负载的网站系统,以分担数据库的压力。Memcached通过在内存里维护一个统一的巨大的Hash表来存储各种格式的数据,包括图像、视频、文件以及数据库检索的结果等。但是Memcach…

代码要走的路:编程“三部曲”

代码要成为可以运行的程序,总共有3步: 1.编辑(edit) 这里的编辑不是像出版编辑那样,只把现成的东西修修改改,而是指编写代码。 编写代码是实实在在的原创,不是整理加工&#xff0…

支持向量机相关证明 解的稀疏性

主要涉及拉格朗日乘子法,对偶问题求解

漫途焊机安全生产监管方案,提升安全生产管理水平!

随着智能制造时代的到来,企业安全生产管理的重要性日益凸显。特别是在现代工厂中,焊机的安全生产监管成为了一个不容忽视的重要环节。传统的焊机安全生产监管方式存在诸多不足,如人工巡检频率低、数据延迟、安全隐患发现不及时等问题。因此&a…

【dvwa靶场:XSS系列】XSS (Reflected)低-中-高级别,通关啦

一、低级low 简单拿捏 <script>alert(123)</script>二、中级middle 源码过滤了script但是没有过滤大小写&#xff0c;改成大写S <Script>alert(123)</script>三、高级high 比中级高&#xff0c;过滤了script并且以及大小写&#xff0c;使用其他标…

太速科技-634-基于3U PXIe的VU3P FMC+数据接口板

基于3U PXIe的VU3P FMC数据接口板 一、产品概述 板卡是一款基于 3U PXIE 总线架构的高性能数据预处理FMC 载板&#xff0c;具有 1 个 FMC&#xff08;HPC&#xff09;接口&#xff0c;1 个 X8 GTH 背板互联接口&#xff0c;可以实现 1 路 PCIe x8。板卡主控芯片采用Xilin…

【LLM Agents体验】Dify框架的安装指南

Dify简介&#xff1a; 核心功能‌12 ‌Dify是一款开源的大语言模型(LLM)应用开发平台&#xff0c;融合了后端即服务&#xff08;Backend as a Service, BaaS&#xff09;和LLMOps的理念&#xff0c;使开发者可以快速搭建生产级的生成式AI应用。LLMOps涵盖了大型语言模型的开发、…

推荐一款PowerPoint转Flash工具:iSpring Suite

iSpring Suite是一款PowerPoint转Flash工具&#xff0c;使用iSpring Suite 8可以轻松的将PPT演示文档转换为对Web友好的Flash影片格式。软件界面简洁&#xff0c;使用方便。为什么要转换成flash格式呢?Flash格式的最大特点是体积小巧、易于分发&#xff0c;兼容所有的操作系统…

数据库->视图

目录 一、视图 1.什么是视图 ​编辑 2.创建视图 1.语法 3.使用视图 4.视图的功能 1.屏蔽相关字段 2.对外提供统一访问规范 3.视图和真实表进行表连接查询 5.修改数据 6.注意事项 7.删除视图 1.语法 8.视图的优点 1. 简单性 2. 安全性 3. 逻辑数据独⽴性 4. 重…

影响神经网络速度的因素- FLOPs、MAC、并行度以及计算平台

影响神经网络速度的四个主要因素分别是 FLOPs&#xff08;浮点操作数&#xff09;、MAC&#xff08;内存访问成本&#xff09;、并行度以及计算平台。这些因素共同作用&#xff0c;直接影响到神经网络的计算速度和资源需求。 1. FLOPs&#xff08;Floating Point Operations&a…

Java Development Kit (JDK) 详解

什么是 JDK&#xff1f; JDK 是 Java Development Kit 的缩写&#xff0c;是一组用于开发 Java 应用程序的软件开发工具和库的集合。JDK 包含了 Java 运行时环境&#xff08;JRE&#xff09;和 Java 虚拟机&#xff08;JVM&#xff09;&#xff0c;以及一系列开发工具和库。 …

Rust 力扣 - 1652. 拆炸弹

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 我们只需要遍历长度长度为k的窗口&#xff0c;然后把窗口内数字之和填充到结果数组中的对应位置即可 题解代码 impl Solution {pub fn decrypt(code: Vec<i32>, k: i32) -> Vec<i32> {let n c…

AAA 数据库事务隔离级别及死锁

目录 一、事务的四大特性&#xff08;ACID&#xff09; 1. 原子性(atomicity)&#xff1a; 2. 一致性(consistency)&#xff1a; 3. 隔离性(isolation)&#xff1a; 4. 持久性(durability)&#xff1a; 二、死锁的产生及解决方法 三、事务的四种隔离级别 0 .封锁协议 …

华为HarmonyOS借助AR引擎帮助应用实现虚拟与现实交互的能力3-获取设备位姿

设备位姿描述了物体在真实世界中的位置和朝向。AR Engine提供了世界坐标下6自由度&#xff08;6DoF&#xff09;的位姿计算&#xff0c;包括物体的位置&#xff08;沿x、y、z轴方向位移&#xff09;和朝向&#xff08;绕x、y、z轴旋转&#xff09;。通过AR Engine&#xff0c;您…

Ubuntu 扩容磁盘

1.没有机子&#xff0c;用虚拟机模拟一下将sdc扩到sdb下面去 2.先查看磁盘是否为ext4的格式 lsblk -f 3.发现不是 那就格式化一下 mkfs.ext4 /dev/sdc 4.转换为物理卷 pvcreate /dev/sdc 5.查看所要扩容的vg名称 vgs 6.物理机扩容到卷组 vgextend vgHome /dev/sdc 7.查看目…