全参微调与LoRA的区别,及7种LoRA变种方法解析

news2025/1/9 1:30:23

随着LLM的发展和应用,在LLM的预训练模型基础上做微调,使其适用于自己的业务场景的研究越来越多。与全参数SFT相比LoRA是在冻结LLM本身参数的基础上,在旁路增加两个可学习的矩阵,用于训练和学习,最后推理是LLM输出和可学习的矩阵的输出相加,得到最终的输出。它与全参数微调方法区别是:

资源上的差异:

  • 全参数微调:需要加载和更新全部LLM参数,需要更高的显存(需要的显存一般是单一参数的4倍),数据量上也需要更多的微调数据;

  • LoRA:只需要加载LLM参数,训练两个可学习的低秩矩阵,显存和数据量要求较低,训练速度也更快;

效果上差异:

  • 全参数微调:存在灾难性遗忘的风险,理论效果上限更高;

  • LoRA:和全参数微调效果差距不大,稳定性和扩展性更好;

2. LoRA原理

LoRA低秩适应微调,该方法的核心思想就是通过低秩分解来模拟参数的改变量,从而以极小的参数量来实现大模型的间接训练。

它的做法是:

1.在原始的Pretrain_LLM旁边增加一个新的通路,通过前后两个矩阵A,B相乘,合并作为输出,即在原始参数 、、 上增加AB矩阵(同一层QKV的AB矩阵参数共享,不同层不共享);

2.第一个矩阵A负责降维,第二个矩阵B负责升维,中间层维度为(),从而来模拟所谓的本征秩(intrinsic rank)。

3.用随机高斯分布初始化,用 0 矩阵初始化,保证训练的开始此旁路矩阵依然是 0 矩阵;

  • • 1.不将AB同时初始化为0,是为了保证训练可以顺利参数更新;

  • • 2.不将AB同时高斯初始化,是为了让模型一开始AB矩阵不起作用,防止一开始 引入噪声;

  • • 3.B高斯分布初始化,A用0初始化可以吗?目前看可以,如果不对请指正;

4.输出结果是两者相加:

3. LoRA的变种

QLoRA

与LoRA相比:LLM模型采用4bit加载,进一步降低训练需要显存。

QLoRA是进一步降低了微调需要的显存,QLoRA是将模型本身用4bit加载,训练时把数值反量化到bf16后进行训练,利用LoRA可以锁定原模型参数不参与训练,只训练少量LoRA参数的特性使得训练所需的显存大大减少。

LoRA+

与LoRA相比:AB矩阵采用不同的学习率;AB矩阵应用到全部参数矩阵。

LoRA+通过为矩阵A和B引入不同的学习率,更有效的训练LoRA适配器。LoRA在训练神经网络时,学习率是应用于所有权重矩阵(包括embeded和normalization层)。而LoRA+的作者可以证明,只有单一的学习率是次优的。将矩阵B的学习率设置为远高于矩阵A的学习率,可以使得训练更加高效。

t是放大因子,。

LoRA-FA

与LoRA相比:仅训练B矩阵。

LoRA-FA是LoRA与Frozen-A的缩写,在LoRA-FA中,矩阵A在初始化后被冻结,矩阵B是在用零初始化之后进行训练(就像在原始LoRA中一样)。这将参数数量减半,同时具有与普通LoRA相当的性能。

LoRA-drop

LoRA矩阵可以添加到神经网络的任何一层,LoRA-drop则引入了一种算法来决定哪些层由LoRA微调,哪些层不需要

LoRA-drop步骤:

  • • 1.对数据的一个子集进行采样,训练LoRA进行几次迭代;

  • • 2.将每个LoRA适配器的重要性计算为BAx,其中A和B是LoRA矩阵,x是输入;

  • • 3.如果这个输出很大,说明它会更剧烈地改变行为,如果它很小,这表明LoRA对冻结层的影响很小可以忽略;

  • • 4.可以汇总重要性值,直到达到一个阈值(这是由一个超参数控制的),或者只取最重要的n个固定n的LoRA层;

  • • 5.最后在整个数据集上进行完整的训练,其他层固定为一组共享参数,在训练期间不会再更改。

LoRA-drop算法允许只使用LoRA层的一个子集来训练模型。根据作者提出的证据表明,与训练所有的LoRA层相比,准确度只有微小的变化,但由于必须训练的参数数量较少,因此减少了计算时间。

AdaLoRA

在LoRA-drop中作者根据LoRA适配器的重要程度,选择部分不重要的LoRA不参与训练。而AdaLoRA作者则是根据重要程度,选择不同LoRA适配器调整秩的大小(原始LoRA所有层秩都一样)。另外AdaLoRA是根据LoRA矩阵的奇异值作为重要程度指标的。

AdaLoRA与相同秩的标准LoRA相比,两种方法总共有相同数量的参数,但这些参数的分布不同。在LoRA中,所有矩阵的秩都是相同的,而在AdaLoRA中,有的矩阵的秩高一些,有的矩阵的秩低一些,所以最终的参数总数是相同的。经过实验表明AdaLoRA比标准的LoRA方法产生更好的结果,这表明在模型的部分上有更好的可训练参数分布,这对给定的任务特别重要。

DoRA

通常认为LoRA等微调技术不如正常微调(Finetune)的原因是,LoRA被认为是对Finetune微调的一种低秩近似,通过增加Rank,LoRA可以达到类似Finetune的微调效果。但是作者发现LoRA的学习模式和FT很不一样,更偏向于强的正相关性,即方向和幅度呈很强的正相关,这可能对更精细的学习有害。

图中x轴是模型更新方向,y轴是幅度变化,图中的散点是每一层。可以看到FT的训练方式,更新的方向和幅度并没有太大关系(或者小的负相关),而LoRA存在较强的正相关性。

哪一种方向和幅度相关性更好?

这个不确定,但是LoRA的目的是利用较小参数达到和FT一致的效果,所以从相关性上应该LoRA的应该更像FT。所以作者将预训练参数矩阵进行分解,分解成包括大小(magnitude)和方向(directional)两个向量,只在方向上应用LoRA微调

DoRA的作者通过将预训练矩阵W分解,得到大小为1 x d的大小向量m和方向矩阵V,从而独立训练大小和方向。然后方向矩阵V通过B* A增强(LoRA),然后m按原样训练。虽然LoRA倾向于同时改变幅度和方向(正如这两者之间高度正相关所表明的那样),DoRA可以更容易地将二者分开调整,或者用另一个的负变化来补偿一个的变化。所以可以DoRA的方向和大小之间的关系更像微调。代码如下

import torch.optim as optim   from torch.utils.data import DataLoader, TensorDataset   import torch   import torch.nn as nn   import torch.nn.functional as F         # This layer is dropped into your pre-trained PyTorch model where nn.Linear is used   class DoRALayer(nn.Module):       def __init__(self, d_in, d_out, rank=4, weight=None, bias=None):           super().__init__()              if weight is not None:               self.weight = nn.Parameter(weight, requires_grad=False)           else:               self.weight = nn.Parameter(torch.Tensor(d_out, d_in), requires_grad=False)              if bias is not None:               self.bias = nn.Parameter(bias, requires_grad=False)           else:               self.bias = nn.Parameter(torch.Tensor(d_out), requires_grad=False)              # m = Magnitude column-wise across output dimension           self.m = nn.Parameter(self.weight.norm(p=2, dim=0, keepdim=True))                      std_dev = 1 / torch.sqrt(torch.tensor(rank).float())           self.lora_A = nn.Parameter(torch.randn(d_out, rank)*std_dev)           self.lora_B = nn.Parameter(torch.zeros(rank, d_in))          def forward(self, x):           lora = torch.matmul(self.lora_A, self.lora_B)           adapted = self.weight + lora           column_norm = adapted.norm(p=2, dim=0, keepdim=True)           norm_adapted = adapted / column_norm           calc_weights = self.m * norm_adapted           return F.linear(x, calc_weights, self.bias)

LongLoRA

LongLoRA 是港中文和 MIT 在 23 年发表的一篇 paper,主要是为了解决长上下文的注意力机制计算量很大的问题。

LLM支持长文本的方法,包括利用NTK等方式进行外推和内插(可参考:位置编码(下)[1],但为了让模型表现更好,一般还会进行微调。LongLoRA的要点:

  • • 1.S2-attn注意力:这一点与LoRA无关,是为解决长序列注意力成二次方增加的问题,S2-attn在训练时不计算全局的注意力,而是将所有token分组,每个token只计算该组和相邻组的注意力,降低显存消耗,提升训练速度。(和longformer、Big Bird等处理长文本注意力方法没有太大区别,都是只算该token附近的注意力);

  • • 2.LoRA训练(变种):在潜入层、归一化层也都加入了LoRA权重进行训练;

总结

LoRA系列大模型微调方法是大模型PEFT非常重要的一个研究方向,也是目前工程届应用最广法的微调方法之一,基于LoRA的改进的论文和方法还在不断更新。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2234223.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ubuntu工具 -- ubuntu服务器临时没有网络,急需联网下载东西怎么办? 使用手机提供网络

问题 ubuntu服务器配置经常遇到临时需要网络下载文件需求, 通过有线连接又来不及 解决方法 使用手机usb为ubuntu服务器提供网络 先在ubuntu上运行 ifconfig 查看当前的网络接口, 一会看看多了哪个网口 1. 手机端操作 先使用usb数据线将手机连接到服务器上 打开手机的usb共享…

一文快速预览经典深度学习模型(一)——CNN、RNN、LSTM、Transformer、ViT

Hi,大家好,我是半亩花海。本文主要简要并通俗地介绍了几种经典的深度学习模型,如CNN、RNN、LSTM、Transformer、ViT(Vision Transformer)等,便于大家初探深度学习的相关知识,并更好地理解深度学…

【D3.js in Action 3 精译_038】4.2 D3 折线图的绘制方法及曲线插值处理

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一部分 D3.js 基础知识 第一章 D3.js 简介(已完结) 1.1 何为 D3.js?1.2 D3 生态系统——入门须知1.3 数据可视化最佳实践(上)1.3 数据可…

数据结构(8.7_2)——败者树

多路平衡归并带来的问题 什么是败者树 败者树的构造 败者树的使用 败者树在多路平衡归并中的应用 败者树的实现思路 总结

Web Broker(Web服务应用程序)入门教程(1)

1、介绍 Web Broker 组件(位于工具面板的“Internet”选项卡中)可以帮助您创建与特定统一资源标识符(URI)相关联的事件处理程序。当处理完成后,您可以通过编程方式构建 HTML 或 XML 文档,并将它们传输给客…

Redis高级篇之缓存一致性详细教程

文章目录 0 前言1.缓存双写一致性的理解1.1 缓存按照操作来分 2. 数据库和缓存一致性的几种更新策略2.1 可以停机的情况2.2 我们讨论4种更新策略2.3 解决方案 总结 0 前言 缓存一致性问题在工作中绝对没办法回避的问题,比如:在实际开发过程中&#xff0c…

Vue2进阶之Vue3高级用法

Vue3高级用法 响应式Vue2:Object.definePropertyObject.definePropertythis.$set设置响应式 Vue3:Proxy composition APIVue2 option API和Vue3 compositionAPIreactive和shallowReactivereadonly效果toRefs效果 生命周期main.jsindex.htmlLifeCycle.vue…

Unity3D学习FPS游戏(10)子弹攻击敌人掉血(碰撞检测)

前言:前面最然创造出带有血条的敌人,但子弹打中敌人并没有效果。所以本篇将实现子弹攻击敌人,并让敌人掉血。 子弹攻击敌人掉血 整体思路目标补充知识-碰撞检测 准备工作刚体和碰撞器添加添加刚体后子弹代码优化补充知识-标签系统Tag添加 碰…

AMD显卡低负载看视频掉驱动(chrome edge浏览器) 高负载玩游戏却稳定 解决方法——关闭MPO

问题 折磨的开始是天下苦黄狗久矣,为了不再被讨乞丐的显存恶心,一怒之下购入了AMD显卡(20GB显存确实爽 头一天就跑了3dmark验机,完美通过,玩游戏也没毛病 但是呢这厮是一点不省心,玩游戏没问题&#xff0c…

服装品牌零售业态融合中的创新发展:以开源 AI 智能名片 S2B2C 商城小程序为视角

摘要:本文以服装品牌零售业态融合为背景,探讨信息流优化和资金流创新的重要作用,并结合开源 AI 智能名片 S2B2C 商城小程序,分析其如何进一步推动服装品牌在零售领域的发展,提高运营效率和用户体验,实现商业…

【数据库】elasticsearch

1、架构 es会为每个索引创建一定数量的主分片和副本分片。 分片(Shard): 将索引数据分割成多个部分,每个部分都是一个独立的索引。 主要目的是实现数据的分布式存储和并行处理,从而提高系统的扩展性和性能。 在创建索…

语言模型的评测

语言模型的评测 内在评测 在内在评测中,测试文本通常由与预训练中所用的文本独立同分布的文本构成,不依赖于具体任务。最为常用的内部评测指标是困惑度(Perplexity) 困惑度是衡量语言模型对测试文本预测能力的一个指标&#xf…

Golang | Leetcode Golang题解之第535题TinyURL的加密与解密

题目: 题解: import "math/rand"type Codec map[int]stringfunc Constructor() Codec {return Codec{} }func (c Codec) encode(longUrl string) string {for {key : rand.Int()if c[key] "" {c[key] longUrlreturn "http:/…

德国卡赫携丰硕成果七赴进博会

第七届中国国际进口博览会于11月5日在国家会展中心(上海)正式拉开帷幕。作为全球最大的清洁设备和清洁解决方案提供商,“全勤生”德国卡赫连续七年参展,并携集团旗下子品牌HAWK霍克一同亮相技术装备展区3号馆,更带来多…

IT架构管理

目录 总则 IT架构管理目的 明确组织与职责 IT架构管理旨在桥接技术实施与业务需求之间的鸿沟,通过深入理解业务战略和技术能力,推动技术创新以支持业务增长,实现技术投资的最大价值。 设定目标与范围 IT架构管理的首要目的是确立清晰的组织…

Rust项目结构

文章目录 一、module模块1.文件内的module 二、模块化项目结构1.关于module2.各个模块之间互相引用 三、推荐项目结构1.实例 参考 一、module模块 1.文件内的module 关键字:mod 引入模块中的方法 usemod名字:方法名usemod名字.*写全路径 二、模块化…

HiveSQL 中判断字段是否包含某个值的方法

HiveSQL 中判断字段是否包含某个值的方法 在 HiveSQL 中,有时我们需要判断一个字段是否包含某个特定的值。下面将介绍几种常用的方法来实现这个功能。 一、创建示例表并插入数据 首先,我们创建一个名为employee的表,并插入一些示例数据&am…

408——计算机网络(持续更新)

文章目录 一、计算机网络概述1.1 计算机网络的概念1.2 计算机网络体系结构1.3 总结 二、物理层2.1 物理层的基本概念2.2 物理层的基本通信技术2.3 总结 三、数据链路层3.1 数据链路层基础概论3.2 数据链路层的通信协议 一、计算机网络概述 1.1 计算机网络的概念 计算机网络的定…

正反shell反弹的区分

在shell反弹中我们会根据参照物的不同来区分正反shell反弹。 本次我们需要使用win和kali进行实验: 在shell反弹中我们需要在win上面安装netcat(瑞士军刀)用于可以执行监听指令。 下载指导链接https://blog.csdn.net/qq_40359932/article/d…

CSS的配色

目录 1 十六进制2 CSS中的十六进制2.1 十六进制颜色的基本结构2.2 十六进制颜色的范围2.3 简写形式2.4 透明度 3 CSS的命名颜色4 配色4.1 色轮4.2 互补色4.3 类似色4.4 配色工具 日常在开发小程序中,客户总是希望你的配色是美的,但是美如何定义&#xff…