我谈正态分布——正态偏态

news2024/11/5 17:00:39

目录

  • pdf和cdf
    • 参数
  • 标准正态分布
  • 期望和方差
  • 分布形态
  • 正态和偏态
    • 正态
    • 偏态
      • 瑞利分布
        • 偏度 (Skewness)
        • 峰度 (Kurtosis)
    • 比较

正态分布的英文是Normal Distribution,normal是“正常”或“标准”的意思,中文翻译是正态,多完美的翻译,正态对应偏态,正态是指分布曲线左右对称,偏度为零。正态分布的峰度也为0。

话说现在的翻译真让人受不了,比如那个multi-head attention。head还有body是按身体的部位命名的,那可能是语言习惯,就像描述像素邻域,他们用north, south, southeast这样描述,但是我们用上、下,右下描述,如果中文用北、南、东南这样描述是不是很奇怪,语言习惯不一样。

不会翻译还不如不翻了,那些翻译为头的人到底有脑子吗?很烦那种不说人话的翻译。

言归正传

正态分布(Normal Distribution),也被称为高斯分布(Gaussian Distribution),是一种重要的连续型概率分布。它在自然和社会科学的许多领域中都有广泛的应用。

pdf和cdf

正态分布的概率密度函数可以表示为:
f ( x ) = 1 σ 2 π e − 1 2 ( x − μ σ ) 2 f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} f(x)=σ2π 1e21(σxμ)2
其中, x x x是随机变量, μ \mu μ是均值, σ \sigma σ是标准差。记为 X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^2) XN(μ,σ2)

正态分布的图形是对称的,其形状像一个钟形曲线,均值(mean)、中位数(median)和众数(mode)都位于分布的中心点。大部分数据集中在平均值附近,随着离平均值距离的增加,数据出现的概率迅速减少。

在这里插入图片描述

正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)的分布函数为

F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt F(x)=2π σ1xe2σ2(tμ)2dt

它是一条光滑上升的 S 形曲线。

在这里插入图片描述

参数

正态分布中的两个参数——均值 μ μ μ和标准差 σ σ σ如何影响正态分布图形的形状和位置。

  1. 如果固定 σ σ σ,改变 μ μ μ的值,则曲线沿 x 轴平移,而不改变其形状。也就是说正态密度函数的位置由参数 μ μ μ所确定,因此称 μ μ μ位置参数

  2. 如果固定 μ μ μ,改变 σ σ σ的值,则分布的位置不变,但 σ σ σ愈小,曲线呈高且窄,数据更加集中于均值周围; σ σ σ愈大,曲线呈低且宽,数据较为分散。也就是说正态密度函数的尺度由参数 σ σ σ所确定,因此称 σ σ σ尺度参数

总结,均值 μ μ μ决定分布的位置,而标准差 σ σ σ则决定了分布的宽度和数据的集中程度。

在这里插入图片描述

标准正态分布

设定随机变量 X X X服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),并将其标准化为 U = X − μ σ U = \frac{X - \mu}{\sigma} U=σXμ,使得 U U U服从标准正态分布 N ( 0 , 1 ) N(0, 1) N(0,1)

对于标准正态分布(均值为0,标准差为1),概率密度函数为:
p ( z ) = 1 2 π e − z 2 2 p(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} p(z)=2π 1e2z2
标准正态分布的累积分布函数:
Φ ( z ) = ∫ − ∞ z 1 2 π e − t 2 2   d t \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \, dt Φ(z)=z2π 1e2t2dt

期望和方差

好巧不巧,正态分布的两个参数正好是均值和标准差。正态分布就是那么完美。

假设 U U U服从标准正态分布 N ( 0 , 1 ) N(0, 1) N(0,1)

  1. 均值的计算

    • 计算 U U U的期望值 E ( U ) E(U) E(U)
      E ( U ) = 1 2 π ∫ − ∞ ∞ u e − u 2 2 d u E(U) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u e^{-\frac{u^2}{2}} du E(U)=2π 1ue2u2du
      由于被积函数是一个奇函数,其积分结果为零,即 E ( U ) = 0 E(U) = 0 E(U)=0
    • 因此,根据 X = μ + σ U X = \mu + \sigma U X=μ+σU,可以得出 X X X的期望值 E ( X ) E(X) E(X)
      E ( X ) = μ + σ × 0 = μ E(X) = \mu + \sigma \times 0 = \mu E(X)=μ+σ×0=μ
    • 结论:正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)的均值为 μ \mu μ
  2. 方差的计算

    • 首先计算 U U U的方差 V a r ( U ) Var(U) Var(U)或者说是 U 2 U^2 U2的期望值 E ( U 2 ) E(U^2) E(U2)
      E ( U 2 ) = 1 2 π ∫ − ∞ ∞ u 2 e − u 2 2 d u E(U^2) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u^2 e^{-\frac{u^2}{2}} du E(U2)=2π 1u2e2u2du
      利用分部积分法,最终得到 E ( U 2 ) = 1 E(U^2) = 1 E(U2)=1
    • 根据 X = μ + σ U X = \mu + \sigma U X=μ+σU,可以得出 X X X的方差 V a r ( X ) Var(X) Var(X)
      V a r ( X ) = V a r ( μ + σ U ) = σ 2 V a r ( U ) = σ 2 × 1 = σ 2 Var(X) = Var(\mu + \sigma U) = \sigma^2 Var(U) = \sigma^2 \times 1 = \sigma^2 Var(X)=Var(μ+σU)=σ2Var(U)=σ2×1=σ2
    • 结论:正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)的方差为 σ 2 \sigma^2 σ2

注意: E ( X ) = μ E(X) = \mu E(X)=μ V a r ( X ) = σ 2 Var(X) = \sigma^2 Var(X)=σ2,均值 μ \mu μ和方差 σ 2 \sigma^2 σ2是正态分布的参数,只是在正态分布中正好等于期望和方差,而 E ( X ) E(X) E(X) V a r ( X ) Var(X) Var(X)是统计量,注意分区概念。有些刊物真是离谱了。
例如,Rafael Gonzalez的《数字图像处理》,此外这个 a a a也真多余。
在这里插入图片描述
和这个
在这里插入图片描述

分布形态

对于一个连续随机变量 X X X,其概率密度函数 f ( x ) f(x) f(x)描述了 X X X在某个特定值 x x x处的概率密度。需要注意的是, f ( x ) f(x) f(x)不直接表示概率,而是表示概率的密度。

对于任意区间 [ a , b ] [a, b] [a,b],随机变量 X X X落在这个区间内的概率可以通过计算该区间上的曲线下面积来得到。数学上,这可以通过积分来表示:
P ( a ≤ X ≤ b ) = ∫ a b f ( x )   d x P(a \leq X \leq b) = \int_{a}^{b} f(x) \, dx P(aXb)=abf(x)dx
要计算 X X X落在某个区间 [ a , b ] [a, b] [a,b]内的概率,可以使用正态分布的累积分布函数(CDF):
P ( a ≤ X ≤ b ) = Φ ( b ) − Φ ( a ) P(a \leq X \leq b) = \Phi(b) - \Phi(a) P(aXb)=Φ(b)Φ(a)
其中, Φ ( x ) \Phi(x) Φ(x)是正态分布的累积分布函数。

假设要计算标准正态分布中 Z Z Z落在 [ − 1 , 1 ] [-1, 1] [1,1]区间内的概率。

  1. 计算 Φ ( 1 ) \Phi(1) Φ(1)
    Φ ( 1 ) = ∫ − ∞ 1 1 2 π e − t 2 2   d t ≈ 0.8413 \Phi(1) = \int_{-\infty}^{1} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \, dt \approx 0.8413 Φ(1)=12π 1e2t2dt0.8413

  2. 计算 Φ ( − 1 ) \Phi(-1) Φ(1)
    Φ ( − 1 ) = ∫ − ∞ − 1 1 2 π e − t 2 2   d t ≈ 0.1587 \Phi(-1) = \int_{-\infty}^{-1} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \, dt \approx 0.1587 Φ(1)=12π 1e2t2dt0.1587

  3. 计算概率
    P ( − 1 ≤ Z ≤ 1 ) = Φ ( 1 ) − Φ ( − 1 ) = 0.8413 − 0.1587 = 0.6826 P(-1 \leq Z \leq 1) = \Phi(1) - \Phi(-1) = 0.8413 - 0.1587 = 0.6826 P(1Z1)=Φ(1)Φ(1)=0.84130.1587=0.6826

因此,标准正态分布中 Z Z Z落在 [ − 1 , 1 ] [-1, 1] [1,1]区间内的概率约为0.6826,即68.26%。

3 σ 3\sigma 3σ原则

  • 1 σ 1σ 1σ区间:大约68.27%的数据点位于平均值 μ μ μ的一个标准差 σ σ σ的范围内,即在 ( μ − σ , μ + σ ) (μ - σ, μ + σ) (μσ,μ+σ)之间。
    P ( μ − σ < X < μ + σ ) ≈ 0.6827 P(μ - σ < X < μ + σ) ≈ 0.6827 P(μσ<X<μ+σ)0.6827
  • 2 σ 2σ 2σ区间:大约95.45%的数据点位于平均值 μ μ μ的两个标准差 2 σ 2σ 2σ的范围内,即在 ( μ − 2 σ , μ + 2 σ ) (μ - 2σ, μ + 2σ) (μ2σ,μ+2σ)之间。
    P ( μ − 2 σ < X < μ + 2 σ ) ≈ 0.9545 P(μ - 2σ < X < μ + 2σ) ≈ 0.9545 P(μ2σ<X<μ+2σ)0.9545
  • 3 σ 3σ 3σ区间:大约99.73%的数据点位于平均值 μ μ μ的三个标准差 3 σ 3σ 3σ的范围内,即在 ( μ − 3 σ , μ + 3 σ ) (μ - 3σ, μ + 3σ) (μ3σ,μ+3σ)之间。
    P ( μ − 3 σ < X < μ + 3 σ ) ≈ 0.9973 P(μ - 3σ < X < μ + 3σ) ≈ 0.9973 P(μ3σ<X<μ+3σ)0.9973

正态分布的3σ原则指出,正态分布随机变量取值落在三倍标准差之外的概率非常小,大约是0.27%(即100% - 99.73%)。

  • 落在 μ ± 3 σ μ±3σ μ±3σ之外的概率为 1 − 0.9973 = 0.0027 1 - 0.9973 = 0.0027 10.9973=0.0027或者说约为0.27%。

在实际应用中,由于这个概率非常小,通常认为这样的事件几乎不会发生。因此,在很多情况下,可以将区间 ( μ − 3 σ , μ + 3 σ ) (μ - 3σ, μ + 3σ) (μ3σ,μ+3σ)视为正态分布随机变量的实际可能取值区间。这意味着在这个区间之外的值可以被视为异常值或者极端值。

这种处理方式简化了数据分析和决策制定的过程,尤其是在质量控制、过程改进等实际问题中, 3 σ 3σ 3σ原则提供了一种有效的方法来识别和处理异常数据点。这也就是所谓的正态分布的 3 σ 3σ 3σ原则。

normcdf(1)-normcdf(-1)
normcdf(2)-normcdf(-2)
normcdf(3)-normcdf(-3)

在这里插入图片描述

正态和偏态

正态

正态分布的曲线是左右对称的,其形状像一个钟形曲线,均值(mean)、中位数(median)和众数(mode)都位于分布的中心点。

偏态

偏态分布是指数据分布不是对称的,而是偏向一侧。偏态可以是正偏(右偏)或负偏(左偏)。

  • 当分布曲线的尾巴向右延伸时,称为正偏态;在正偏态分布中,大多数数据值集中在左侧,而右侧有较长的拖尾。
  • 当分布曲线的尾巴向左延伸时,称为负偏态。而在负偏态分布中,大多数数据值集中在右侧,左侧有较长的拖尾。

瑞利分布

看瑞利分布,我喜欢这个分布,并不知道什么用,就是喜欢它的流线型。

对于参数为 σ \sigma σ的瑞利分布,其概率密度函数 (PDF) 可以表示为:
f ( x ; σ ) = x σ 2 e − x 2 / ( 2 σ 2 ) , x ≥ 0 f(x;\sigma) = \frac{x}{\sigma^2} e^{-x^2/(2\sigma^2)}, \quad x \geq 0 f(x;σ)=σ2xex2/(2σ2),x0

其中, σ > 0 \sigma > 0 σ>0是尺度参数。

  • 均值(期望):
    E ( X ) = σ π 2 E(X) = \sigma \sqrt{\frac{\pi}{2}} E(X)=σ2π

  • 方差:
    V a r ( X ) = ( 4 − π ) σ 2 2 Var(X) = \left( 4 - \pi \right) \frac{\sigma^2}{2} Var(X)=(4π)2σ2

瑞利分布的均值和方差如何随着形状参数 σ \sigma σ的变化而变化。具体来说,当 σ \sigma σ增大时,均值和方差都会相应地增加。

偏度 (Skewness)

瑞利分布的偏度是正的,表明分布是右偏的。具体来说,偏度 γ 1 \gamma_1 γ1可以通过以下公式计算:
γ 1 = 2 π ( 4 − π 2 ) − 3 / 2 ≈ 0.6311 \gamma_1 = \sqrt{\frac{2}{\pi}} \left( \frac{4 - \pi}{2} \right)^{-3/2} \approx 0.6311 γ1=π2 (24π)3/20.6311

峰度 (Kurtosis)

峰度描述了分布的尖峭程度,对于瑞利分布,其峰度 β 2 \beta_2 β2可以表示为:
β 2 = ( 4 − π 2 ) − 2 ⋅ ( 3 − 6 π 4 − π + π 2 2 ) ≈ 3.245 \beta_2 = \left( \frac{4 - \pi}{2} \right)^{-2} \cdot \left( 3 - \frac{6\pi}{4 - \pi} + \frac{\pi^2}{2} \right) \approx 3.245 β2=(24π)2(34π6π+2π2)3.245

这里,峰度是指四阶标准化矩,而超峰度(excess kurtosis)则是指峰度减去3,因此瑞利分布的超量峰度为:
Excess Kurtosis = β 2 − 3 ≈ 0.245 \text{Excess Kurtosis} = \beta_2 - 3 \approx 0.245 Excess Kurtosis=β230.245

正态分布的偏度为0,峰度为3(超峰度为0),而瑞利分布的偏度为正值,峰度略大于3,这反映了它的分布形态特点。

在这里插入图片描述

比较

  • 对称性:正态分布是对称的,而偏态分布是非对称的。
  • 中心位置:在正态分布中,均值、中位数和众数都是相同的;而在偏态分布中,这三个统计量通常不同,且它们之间的关系可以用来判断偏态的方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2233694.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Web服务器(理论)

目录 Web服务器www简介常见Web服务程序介绍&#xff1a;服务器主机主要数据浏览器 网址及HTTP简介URLhttp请求方法:2.3 HTTP协议请求的工作流程&#xff1a; www服务器的类型静态网站动态网站 HTTPS简介概念解释SSL协议分为两层SSL协议提供的服务 HTTPS安全通信机制图解过程 快…

解决方案 | 部署更快,自动化程度高!TOSUN同星线控底盘解决方案

Tosun——线控底盘解决方案 在汽车智能化和电动化进程中&#xff0c;智能线控底盘相关的核心技术和产品成为了新能源汽车及智能驾驶产业的重点发展方向。同星智能作为行业先行者&#xff0c;精研汽车电子行业整体解决方案&#xff0c;提供基于TSMaster的底盘HIL仿真测试解决方…

服务器作业(2)

架设一台NFS服务器&#xff0c;并按照以下要求配置 关闭防火墙 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 配置文件设置&#xff1a; [rootlocalhost ~]# vim /etc/exports 1、开放/nfs/shared目录&#xff0c;供所有用户查询资料 共享…

架构师备考-软件工程相关补充

目录 软件开发生命周期 软件工程过程 软件维护分类 遗留系统 软件重用 逆向工程 相关概念 抽象层次 需求工程 需求工程主要活动 需求管理的主要活动 需求获取的主要步骤 需求获取方法 需求变更管理的过程 净室软件工程 定义 理论基础 技术手段 应用 缺点 软…

基于SSM+VUE小型企业财务报销管理系统JAVA|VUE|Springboot计算机毕业设计源代码+数据库+LW文档+开题报告+答辩稿+部署教+代码讲解

源代码数据库LW文档&#xff08;1万字以上&#xff09;开题报告答辩稿 部署教程代码讲解代码时间修改教程 一、开发工具、运行环境、开发技术 开发工具 1、操作系统&#xff1a;Window操作系统 2、开发工具&#xff1a;IntelliJ IDEA或者Eclipse 3、数据库存储&#xff1a…

站大爷代理IP工具的导入功能介绍

在数字化时代&#xff0c;代理IP成为了网络爬虫、数据挖掘等网络活动中不可或缺的工具。站大爷代理IP工具深刻理解用户的需求&#xff0c;提供了多种代理IP导入方式&#xff0c;让代理IP的管理变得简单高效。下面就来详细了解一下这些便捷的导入方法&#xff1a; 一、站大爷AP…

CSP-J2023T4 旅游巴士(同余最短路)

题目链接&#xff1a;https://www.luogu.com.cn/problem/P9751 题意&#xff1a;给定 n 个点&#xff0c; m 条单向边&#xff0c;一个时间间隔 k 。有这样一些限制条件&#xff1a; 1&#xff09;1号点是入口&#xff0c; n 号点是出口&#xff1b; 2&#xff09;经过一条边…

React系列教程(2)React哲学

豆约翰习惯将掌握某一技术分为5个层次&#xff1a;初窥门径&#xff0c;小试牛刀&#xff0c;渐入佳境&#xff0c;得心应手&#xff0c;玩转自如 本篇属于React框架中的第1层次即初窥门径 我们认为&#xff0c;React 是用 JavaScript 构建快速响应的大型 Web 应用程序的首选方…

「Mac畅玩鸿蒙与硬件29」UI互动应用篇6 - 多选问卷小应用

本篇将带你实现一个多选问卷小应用&#xff0c;用户可以勾选选项并点击提交按钮查看选择的结果。通过本教程&#xff0c;你将学习如何使用 Checkbox 组件、动态渲染列表、状态管理及用户交互&#xff0c;构建完整的应用程序。 关键词 UI互动应用Checkbox 组件状态管理动态列表…

【linux 多进程并发】0203 网络资源的多进程处理,子进程完全继承网络套接字,避免“惊群”问题

0203 网络资源的多进程处理 ​专栏内容&#xff1a; postgresql使用入门基础手写数据库toadb并发编程 个人主页&#xff1a;我的主页 管理社区&#xff1a;开源数据库 座右铭&#xff1a;天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物. 一、概…

江协科技STM32学习- P32 MPU6050

&#x1f680;write in front&#x1f680; &#x1f50e;大家好&#xff0c;我是黄桃罐头&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​…

程序设计方法与实践-时空权衡

什么是时空权衡&#xff1f; 时空权衡是算法设计中的一个众所周知的问题&#xff0c;也就是对算法的空间和时间效率做出权衡&#xff0c;它大概有分两种形式&#xff1a; 对输入的部分数据或者全部数据作预处理&#xff0c;然后对于获得额外信息储存起来&#xff0c;从而加快…

STM32F1学习——TIM

一、STM32中的定时器 在STM32中分为三种定时器&#xff0c;分别是基本定时器&#xff0c;通用定时器和高级定时器&#xff0c;每种定时器都是向下兼容的。 二、定时器详细介绍 a、基本定时器 基本定时器主要由下面与分频器、计数器 和 自动重装寄存器三个组成的时基单元&#…

W5500-EVB-Pico2评估板介绍

目录 1 概述 2 板载资源 2.1 硬件规格 2.2 硬件规格 2.3 工作条件 3 参考资料 3.1 RP2350 数据手册 3.2 W5500 数据手册 3.3 原理图 原理图 & 物料清单 & Gerber 文件 3.3 尺寸图 (单位 : mm) 3.4 参考例程 认证 CE FCC AWS 资质 Microsoft Azure 认证…

FFmpeg 4.3 音视频-多路H265监控录放C++开发十二:在屏幕上显示多路视频播放,可以有不同的分辨率,格式和帧率。

上图是在安防领域的要求&#xff0c;一般都是一个屏幕上有显示多个摄像头捕捉到的画面&#xff0c;这一节&#xff0c;我们是从文件中读取多个文件&#xff0c;显示在屏幕上。

Oracle视频基础1.4.3练习

15个视频 1.4.3 できない dbca删除数据库 id ls cd cd dbs ls ls -l dbca# delete a database 勾选 # chris 勾选手动删除数据库 ls ls -l ls -l cd /u01/oradata ls cd /u01/admin/ ls cd chris/ ls clear 初始化参数文件&#xff0c;admin&#xff0c;数据文件#新版本了…

一个由Deno和React驱动的静态网站生成器

大家好&#xff0c;今天给大家分享一个由 Deno React 驱动的静态网站生成器Pagic。 项目介绍 Pagic 是一个由 Deno React 驱动的静态网站生成器。它配置简单&#xff0c;支持将 md/tsx 文件渲染成静态页面&#xff0c;而且还有大量的官方或第三方主题和插件可供扩展。 核心…

1分钟解决Excel打开CSV文件出现乱码问题

一、编码问题 1、不同编码格式 CSV 文件有多种编码格式&#xff0c;如 UTF - 8、UTF - 16、ANSI 等。如果 CSV 文件是 UTF - 8 编码&#xff0c;而 Excel 默认使用的是 ANSI 编码打开&#xff0c;就可能出现乱码。例如&#xff0c;许多从网络应用程序或非 Windows 系统生成的 …

发布天工AI高级搜索功能,昆仑万维做最懂科研学术的AI搜索

今天&#xff0c;昆仑万维天工AI正式发布最新版本的AI高级搜索功能。 一年时光&#xff0c;栉风沐雨。昆仑万维致力于通过领先的AI技术&#xff0c;为全球用户提供创新的智能搜索和信息处理解决方案。无论是金融、科技领域的专业搜索还是文档分析&#xff0c;「天工AI高级搜索…

mac找到主目录下的文件夹

访达-&#xff08;上方状态栏显示&#xff09;-然后在