小北的字节跳动青训营与 LangChain 实战课:探索 AI 技术的新边界(持续更新中~~~)

news2024/12/30 1:29:12

 前言

       最近,字节跳动的青训营再次扬帆起航,作为第二次参与其中的小北,深感荣幸能借此机会为那些尚未了解青训营的友友们带来一些详细介绍。青训营不仅是一个技术学习与成长的摇篮,更是一个连接未来与梦想的桥梁~

小北的青训营 X MarsCode 技术训练营——AI 加码,字节跳动青训营入营考核解答(持续更新中~~~)-CSDN博客icon-default.png?t=O83Ahttps://blog.csdn.net/Zhiyilang/article/details/143384787?sharetype=blogdetail&sharerId=143384787&sharerefer=PC&sharesource=Zhiyilang&spm=1011.2480.3001.8118

哈喽哈喽,这里是是zyll~,北浊.欢迎来到小北的 LangChain 实战课学习笔记!

       在这个充满变革的时代,技术的每一次进步都在推动着世界的快速发展。字节跳动的青训营,作为技术人才培养的重要平台,再次扬帆起航,为怀揣梦想的技术爱好者们提供了一个学习和成长的摇篮。作为青训营的一员,小北深感荣幸能够借此机会,为大家详细介绍青训营的精彩内容,并分享 LangChain 实战课的学习心得,希望能够帮助大家更好地理解和应用最前沿的 AI 技术。

字节跳动青训营:连接未来与梦想的桥梁

青训营是字节跳动为培养新一代技术人才而设立的综合性训练营。在这里,学员们不仅能够接触到最前沿的技术知识,还能通过实战项目锻炼自己的实践能力和团队协作能力。青训营的课程涵盖了人工智能、大数据、云计算等多个领域,旨在帮助学员们全面提升自己的技术素养和解决问题的能力。

更重要的是,青训营为学员们提供了一个与业界顶尖专家交流的平台。通过参加青训营,学员们可以深入了解行业的最新动态和技术趋势,拓宽自己的视野和思路。同时,青训营还注重培养学员们的创新精神和创业意识,鼓励他们勇于尝试和突破自我,为未来的职业发展打下坚实的基础。

LangChain 实战课:释放大语言模型潜能的利器

随着 ChatGPT 和 GPT-4 等大型语言模型的横空出世,AI 技术的发展迎来了新的里程碑。然而,如何有效地利用这些大型语言模型,将其潜能最大化地释放出来,成为了摆在我们面前的一个重要课题。LangChain 作为一种专为开发基于语言模型的应用而设计的框架,为我们提供了强有力的支持。

LangChain 框架不仅支持通过 API 调用大型语言模型,还具备数据感知和代理性等高级功能。通过 LangChain,我们可以将语言模型与其他数据源连接起来,实现对更丰富、更多样化数据的理解和利用。同时,LangChain 还允许语言模型与其环境进行交互,使其能够对其环境有更深入的理解,并能够进行有效的响应。

在 LangChain 实战课中,我们从小北的角度出发,为大家设计了四大模块的课程内容。从启程篇的零基础入门,到基础篇的深入探索 LangChain 六大组件,再到应用篇和实战篇的场景应用和动手实践,我们力求帮助学员们全面掌握 LangChain 的精髓和应用技巧。

LangChain中的具体组件包括:

  • 模型(Models),包含各大语言模型的LangChain接口和调用细节,以及输出解析机制。
  • 提示模板(Prompts),使提示工程流线化,进一步激发大语言模型的潜力。
  • 数据检索(Indexes),构建并操作文档的方法,接受用户的查询并返回最相关的文档,轻松搭建本地知识库。
  • 记忆(Memory),通过短时记忆和长时记忆,在对话过程中存储和检索数据,让ChatBot记住你是谁。
  • 链(Chains),是LangChain中的核心机制,以特定方式封装各种功能,并通过一系列的组合,自动而灵活地完成常见用例。
  • 代理(Agents),是另一个LangChain中的核心机制,通过“代理”让大模型自主调用外部工具和内部工具,使强大的“智能化”自主Agent成为可能!你的 App 将产生自驱力!

这些组件是LangChain的基石,是赋予其智慧和灵魂的核心要素,它们相互协作,形成一个强大而灵活的系统。在基础篇中,我们将深入探索这些组件的工作原理和使用方法,并给出大量用例,夯实你对这些组件的理解和应用能力。

应用篇:积累场景中的智慧

在这个模块中,我们会展示如何将LangChain组件应用到实际场景中。你将学会如何使用LangChain的工具和接口,进行嵌入式存储,连接数据库,引入异步通信机制,通过智能代理进行各种角色扮演、头脑风暴,并进行自主搜索,制定自动策略,尝试不同方案完成任务。

我们将不仅仅是讲解这些组件的功能,还会通过实际应用场景来展示它们是如何互相配合,共同完成复杂任务的。本模块中的很多机制都来源于最新论文,其中对AI智能代理机制的各种使用方式将令你大开脑洞,或许你会哈哈一笑,或许你会击节赞叹,钦佩设计者思路之清奇。

实战篇:动手!

你将学习如何部署一个鲜花网络电商的人脉工具,并开发一个易速鲜花聊天客服机器人。从模型的调用细节,到数据连接的策略,再到记忆的存储与检索,每一个环节都是为了打造出一个更加智能、更加人性化的系统。

至此,你将能够利用LangChain构建出属于自己的智能问答系统,不论是用于企业的应用开发,还是个人的日常应用,都能够得心应手,游刃有余。

实战案例:

应用 1:情人节玫瑰宣传语

情人节到啦,你的花店需要推销红色玫瑰,那么咱们让大语言模型做的第一个应用,就是给咱们生成简短的宣传语。

这个需求极为简单,你直接去ChatGPT网站,或者用文心一言、星火认知等大模型,都做得到。不过,怎样通过LangChain来用程序的方式实现呢?也很容易。

第一步是安装三个包,通过 pip install langchain 来安装LangChain,通过 pip install openai 来安装OpenAI,还需要通过 pip install langchain-openai 以便在 LangChain 中使用 OpenAI 模型。

pip install langchain
pip install openai 
pip install langchain-openai

第二步,你还需要在OpenAI网站注册属于自己的OpenAI Key。(当然,LangChain也支持其他的开源大语言模型,但是推理效果没有GPT那么好,所以我们这个课程里面的大多数示例都是用OpenAI的GPT系列模型来完成。)

完成了上面两个步骤,就可以写代码了。

import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI Key'
from langchain_openai import OpenAI
llm = OpenAI(model_name="gpt-3.5-turbo-instruct",max_tokens=200)
text = llm.invoke("请给我写一句情人节红玫瑰的中文宣传语")
print(text)

这里,我们先导入了OpenAI的API Key,然后从LangChain中导入OpenAI的Text模型接口,并初始化这个大语言模型,把我们的需求作为提示信息,传递给大语言模型。

运行程序,我得到了好几个漂亮的文案。而且每次运行都会有新的惊喜。

你也许会觉得,这个应用太简单了,直接去大模型

import os
from langchain_openai import ChatOpenAI

# llm = OpenAI(model_name="gpt-3.5-turbo-instruct",max_tokens=200)
llm = ChatOpenAI(model=os.environ.get("LLM_MODELEND"))

text = llm.predict("请给我写一句情人节红玫瑰的中文宣传语")
print(text)

的网页上问更方便。的确如此,那下面我们再来一个无法直接在网页上完成的应用。

应用2:海报文案生成器

你已经制作好了一批鲜花的推广海报,想为每一个海报的内容,写一两句话,然后post到社交平台上,以期图文并茂。

这个需求,特别适合让AI帮你批量完成,不过,ChatGPT网页可不能读图。下面,我们就用LangChain的“代理”调用“工具”来完成自己做不到的事情。

我们就用一段简单的代码实现上述功能。这段代码主要包含三个部分:

  1. 初始化图像字幕生成模型(HuggingFace中的image-caption模型)。
  2. 定义LangChain图像字幕生成工具。
  3. 初始化并运行LangChain Agent(代理),这个Agent是OpenAI的大语言模型,会自动进行分析,调用工具,完成任务。

不过,这段代码需要的包比较多。在运行这段代码之前,你需要先更新LangChain到最新版本,安装HuggingFace的Transformers库(开源大模型工具),并安装 Pillow(Python图像处理工具包)和 PyTorch(深度学习框架)。

pip install --upgrade langchain
pip install transformers
pip install pillow
pip install torch torchvision torchaudio
#---- Part 0 导入所需要的类
import os
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
from langchain.tools import BaseTool
from langchain import OpenAI
from langchain.agents import initialize_agent, AgentType

#---- Part I 初始化图像字幕生成模型
# 指定要使用的工具模型(HuggingFace中的image-caption模型)
hf_model = "Salesforce/blip-image-captioning-large"

# 初始化处理器和工具模型
# 预处理器将准备图像供模型使用
processor = BlipProcessor.from_pretrained(hf_model)
# 然后我们初始化工具模型本身
model = BlipForConditionalGeneration.from_pretrained(hf_model)

#---- Part II 定义图像字幕生成工具类
class ImageCapTool(BaseTool):
   
    name = "Image captioner"
    description = "为图片创作说明文案."

    def _run(self, url: str):
        # 下载图像并将其转换为PIL对象
        image = Image.open(requests.get(url, stream=True).raw).convert('RGB')
        # 预处理图像
        inputs = processor(image, return_tensors="pt")
        # 生成字幕
        out = model.generate(**inputs, max_new_tokens=20)
        # 获取字幕
        caption = processor.decode(out[0], skip_special_tokens=True)
        return caption
    
    def _arun(self, query: str):
        raise NotImplementedError("This tool does not support async")

#---- PartIII 初始化并运行LangChain智能代理
# 设置OpenAI的API密钥并初始化大语言模型(OpenAI的Text模型)
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'
llm = OpenAI(temperature=0.2)

# 使用工具初始化智能代理并运行它
tools = [ImageCapTool()]
agent = initialize_agent(
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    tools=tools,
    llm=llm,
    verbose=True,
)
img_url = 'https://mir-s3-cdn-cf.behance.net/project_modules/hd/eec79e20058499.563190744f903.jpg'
agent.invoke(input=f"{img_url}\n请创作合适的中文推广文案")

根据输入的图片URL,由OpenAI大语言模型驱动的LangChain Agent,首先利用图像字幕生成工具将图片转化为字幕,然后对字幕做进一步处理,生成中文推广文案。

运行结果1:

运行结果2:

运行结果3:

说明:因为temperature=0.2代表模型拥有一定的随机性,所以大模型每次的推理过程生成的文案都不尽相同。

# ---- Part 0 导入所需要的类
import os
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
from langchain.tools import BaseTool
from langchain_openai import ChatOpenAI
from langchain.agents import initialize_agent, AgentType

# ---- Part I 初始化图像字幕生成模型
# 指定要使用的工具模型(HuggingFace中的image-caption模型)
hf_model = "Salesforce/blip-image-captioning-large"

cache_dir = "/cloudide/workspace/cache"

# 确保缓存目录存在
os.makedirs(cache_dir, exist_ok=True)

print("正在初始化图像字幕生成模型...")

# 初始化处理器和工具模型
# 预处理器将准备图像供模型使用
processor = BlipProcessor.from_pretrained(hf_model, cache_dir=cache_dir)
# 然后我们初始化工具模型本身
model = BlipForConditionalGeneration.from_pretrained(hf_model, cache_dir=cache_dir)
print("初始化图像字幕生成模型成功")


# ---- Part II 定义图像字幕生成工具类
class ImageCapTool(BaseTool):
    name = "Image captioner"
    description = "使用该工具可以生成图片的文字描述,需要传入图片的URL."

    def _run(self, url: str):
        # 下载图像并将其转换为PIL对象
        image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
        # 预处理图像
        inputs = processor(image, return_tensors="pt")
        # 生成字幕
        out = model.generate(**inputs, max_new_tokens=20)
        # 获取字幕
        caption = processor.decode(out[0], skip_special_tokens=True)
        return caption

    def _arun(self, query: str):
        raise NotImplementedError("This tool does not support async")


# ---- PartIII 初始化并运行LangChain智能体
# llm = OpenAI(temperature=0.2)
llm = ChatOpenAI(
    model=os.environ.get("LLM_MODEL_4K_FUNCTION_CALL"),
    temperature=0,
)
print("初始化大语言模型成功")
# 使用工具初始化智能体并运行
tools = [ImageCapTool()]
agent = initialize_agent(
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    tools=tools,
    llm=llm,
    verbose=True,
    handle_parsing_errors=True,
)

img_url = "https://lf3-static.bytednsdoc.com/obj/eden-cn/lkpkbvsj/ljhwZthlaukjlkulzlp/eec79e20058499.563190744f903.jpg"
# agent.run(input=f"{img_url}\n请创作合适的中文推广文案")
agent.invoke(input=f"图片链接如下:{img_url}\n 请为这张图创作合适的中文推广文案")

针对上面的鲜花图片,程序进入了AgentExecutor链,开始思考推理,并采取行动——调用Image Cationer工具,接收该工具给出的结果,并根据其返回的内容,再次进行思考推理,最后给出的文案是:“爱,让每一天充满美丽,让每一个心情都充满甜蜜。” 多么浪漫而又富有创意,大模型懂我!

当然,这个过程中还有很多很多的细节,比如大模型是怎么思考的?LangChain调用大模型时传入的具体提示文本是什么?代理是什么?AgentExecutor Chain 是什么?它究竟是怎样调度工具的?你现在可能有很多的疑惑。

在后续的课程中,我会带着你手撕 LangChain 内部源代码,把所有这些一点一滴地剖析清楚。

关于 LangChain,我想向你分享的还有太多太多,短短的开篇词已经无法容纳了。那么,就让我最后告诉你:玩 LangChain,真的很有意思,越深入,越发觉大语言模型是一个无尽的宝藏。在这样的系统中,我们并不是生硬的去设计什么固定的逻辑,而是由语言模型通过理解和推理来决定执行什么操作以及执行的顺序

现在友友们你们准备好了吗?让我们一同投身到LangChain的世界中,解锁AI的无限可能!


结语

       无论是字节跳动的青训营还是 LangChain 实战课,都是我们探索 AI 技术新边界的重要途径。通过参加这些课程和活动,我们可以不断提升自己的技术水平和创新能力,为未来的职业发展打下坚实的基础。同时,我们也应该保持对新技术的好奇心和探索精神,勇于尝试和突破自我,共同推动 AI 技术的不断进步和发展。

希望本文能够为大家提供一些有用的信息和启发,也欢迎大家在评论区留言交流心得和看法。让我们一起携手前行,在 AI 技术的道路上不断追求卓越和创新!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2231176.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【SSM详细教程】-15-Spring Restful风格【无敌详细】

精品专题: 01.《C语言从不挂科到高绩点》课程详细笔记 https://blog.csdn.net/yueyehuguang/category_12753294.html?spm1001.2014.3001.5482 02. 《SpringBoot详细教程》课程详细笔记 https://blog.csdn.net/yueyehuguang/category_12789841.html?spm1001.20…

使用Python爬取某发地网市场蔬菜价格数据

前言 随着互联网技术的发展,数据抓取成为了获取大量公开数据的重要手段。本文将介绍如何利用 Python 编程语言结合 DrissionPage 和自定义的 DataRecorder 模块,实现对新发地市场蔬菜价格数据的自动化抓取,并将抓取到的数据保存至 CSV 文件中…

免费好用又好看且多端自动同步第三方终端工具Termius你值得拥有

使用目的: 本地终端功能一样,都是为了登录服务器查看日志等操作。 本地终端 优点:方便简单,无需额外下载安装、免费。 缺点:每次都需要重新登陆输入命令,步骤繁琐无法简化;不能跨端同步。 第…

Postman:高效的API测试工具

在现代软件开发中,前后端分离的架构越来越普遍。前端开发者与后端开发者之间的协作需要一种高效的方式来测试和验证API接口。在这个背景下,Postman作为一款强大的API测试工具,受到了广泛的关注和使用。 今天将介绍什么是Postman、为什么要使用…

计算机网络-以太网小结

前导码与帧开始分界符有什么区别? 前导码--解决帧同步/时钟同步问题 帧开始分界符-解决帧对界问题 集线器 集线器通过双绞线连接终端, 学校机房的里面就有集线器 这种方式仍然属于共享式以太网, 传播方式依然是广播 网桥: 工作特点: 1.如果转发表中存在数据接收方的端口信息…

基于Retinex算法的图像去雾matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 2.算法运行软件版本 matlab2022a 3.部分核心程序 (完整版代码包含详细中文注释和操作步骤视频&#xff09…

Nature Medicine病理AI汇总|TORCH:预测未知原发部位癌症的肿瘤起源|顶刊精析·24-11-01

小罗碎碎念 今天分析Nature Medicine病理AI系列的第三篇文章——《Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning》 这篇文章报道了一种基于细胞学图像的深度学习方法TORCH,用于预测未知原发部位癌症的肿瘤…

Ubuntu 安装CUDA, cuDNN, TensorRT(草稿)

文章目录 写在前面一、CUDA, cuDNN, TensorRT 三个库的版本的确定二、解决方法参考链接 写在前面 自己的测试环境: Ubuntu20.04, 本文安装的版本: cuda_11.1.0;cuDNN-8.2.1;TensorRT-8.2.4.2 一、CUDA, cuDNN, TensorRT 三个库…

豆包,攻克数字是个什么工具?《GKData-挖掘数据的无限可能》(数据爬虫采集工具)

豆包,攻克数字是个什么工具? “攻克数字” 指的是 “攻克数字(GKData)” 这样一款工具。是一款针对网页、APP中数据自动解析转表存入数据库的软件,为数据工作者而生。它是一个不会编程也能用的可视化数据解析为标准二…

rust编写的系统监测器

系统监测器 技术栈 rusttaurivue3vue-echartsrsbuild 软件介绍 用于查看电脑的硬件信息,实时监测cpu,内存,硬盘,网络,进程等系统资源 图形化,动态化展示,美观实用 软件截图 下载 https:/…

实体类中为什么要实现serializable接口

最近见到好多项目中写的代码,在实体类中实现了Serializable接口。说实话:这个在以前学习的时候,貌似学过,但是一直没有用过,所以看着一脸懵逼,但是别人总不可能随便写的吧.....所以就去查了一下这个接口。 …

github打不开网络问题

当打开github出现超时或者网络不能访问的情况时,我们进行如下方法解决: 1,ping gitbub.com查看域名分析的DNS IP C:\Users\86156>ping github.com 正在 Ping github.com [20.205.243.166] 具有 32 字节的数据: 来自 20.205.243.166 的回复…

基于NVIDIA NIM平台实现盲人过马路的demo(一)

前言:利用NVIDIA NIM平台提供的大模型进行编辑,通过llama-3.2-90b-vision-instruct模型进行初步的图片检测 step1: 部署大模型到本地,引用所需要的库 import os import requests import base64 import cv2 import time from datetime import datetimestep2: 观看官方使用文…

Java日志脱敏(二)——fastjson Filter + 注解 + 工具类实现

背景简介 日志脱敏 是常见的安全需求,最近公司也需要将这一块内容进行推进。看了一圈网上的案例,很少有既轻量又好用的轮子可以让我直接使用。我一直是反对过度设计的,而同样我认为轮子就应该是可以让人拿去直接用的。所以我准备分享两篇博客…

上海亚商投顾:沪指缩量调整 华为概念股午后爆发

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 市场全天震荡调整,沪指、深成指午后跌超1%,创业板指一度跌逾2%,尾盘跌幅有…

从0开始学PHP面向对象内容之(类,对象,构造/析构函数)

上期我们讲了面向对象的一些基本信息&#xff0c;这期让我们详细的了解一下 一、面向对象—类 1、PHP类的定义语法&#xff1a; <?php class className {var $var1;var $var2 "constant string";function classfunc ($arg1, $arg2) {[..]}[..] } ?>2、解…

利用Docker Compose构建微服务架构

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 利用Docker Compose构建微服务架构 引言 Docker Compose 简介 安装 Docker Compose 创建项目结构 编写 Dockerfile 前端 Dockerf…

CPU用户时间百分比

在计算机系统中&#xff0c;"CPU用户时间百分比&#xff08;CPU User Time&#xff09;"是一个性能监控指标&#xff0c;它描述了CPU在用户模式下执行的累积时间与总的CPU时间的比例。这个指标可以帮助我们了解系统在执行用户态程序时的负载情况。下面是一些关于CPU用…

TEC半导体致冷工作原理:【图文详讲】

目录 1&#xff1a;什么是TEC 2&#xff1a;TEC工作原理 3&#xff1a;TEC结构 4&#xff1a;TEC技术参数 5&#xff1a;TEC选型 6&#xff1a;实物TEC 7&#xff1a;手机散热器 1&#xff1a;什么是TEC TEC半导体致冷器&#xff08;Thermo Electric Cooler&#xff09…

排序 (插入/选择排序)

目录 一 . 排序概念及运用 1.1 排序的概念 1.2 排序的应用 1.3 常见的排序算法 二 . 插入排序 2.1 直接插入排序 2.1 复杂度分析 2.3 希尔排序 2.4 希尔排序时间复杂度分析 三 . 选择排序 3.1 直接选择排序 3.2 堆排序 一 . 排序概念及运用 1.1 排序的概念 排序 : 所…