目录
1:什么是TEC
2:TEC工作原理
3:TEC结构
4:TEC技术参数
5:TEC选型
6:实物TEC
7:手机散热器
1:什么是TEC
TEC半导体致冷器(Thermo Electric Cooler)它是利用半导体材料的珀尔帖(Peliter)效应制成的所谓珀尔帖效应,是指当直流电流通过两种半导体材料组成的电偶时,在电偶的两端即可出现一端吸收热量,一端放出热量的现象。所以TEC也被叫做热电制冷器。
2:TEC工作原理
TEC的最小单元是由一对(组)N型和P型半导体加连接电极(烧结点)组成,连接电极形成冷端和热端(图1)。在外加电场作用下,电流能够将在半导体内的热量从TEC的一端带到另外一端,在TEC上产生″热″侧和″冷″侧。而当电流方向翻转时会导致TEC冷热端面切换(图2)。这就是TEC的加热与致冷原理。
可以理解为TEC是将冷端的热量转运到热端,在热量转运的过程中,TEC本身需要通入电流电压,也会产生热量。
(图1)
(图2)
在电路中放置P型半导体和N型半导体组成一对单元,通电时会在一端产生电子空穴对,内能减小,温度降低,形成冷端;另一端因电子空穴对复合,内能增加,温度升高,形成热端。
知识温习:
P型半导体:
P型半导体是通过在纯净的半导体材料(如硅或锗)中掺入少量的三价元素而形成的。这些三价元素,如硼(B)或铝(Al),在晶格中取代原有的四价原子,从而形成一个空穴(即缺失的电子),这个空穴表现为正电荷。因此,P型半导体中的主要载流子是带正电的空穴。
N型半导体:
N型半导体则是通过在纯净半导体材料中掺入微量的五价元素,如磷(P)或砷(As)等杂质而形成的。这些五价元素在晶格中多余的一个电子不参与共价键的形成,因此成为自由电子。这些自由电子是N型半导体中的主要载流子,使得N型半导体具有负电性。
3:TEC结构
TEC热电制冷器的组成包括内部半导体P极、半导体N极和导电金属,以及顶层底层温度交换用的陶瓷基板所组成。单个热电制冷对的制冷能力有限,TEC一般有十几到几十个制冷对组合而成(见图3)。通过控制电流方向,TEC既可以制冷又可以制热,实现优于0.1℃的温度控制稳定性。
(图3)
4:TEC技术参数
1:电流:小型半导体制冷片TEC的电流可以根据不同的应用场景进行调整,通常在几毫安到几百毫安之间。
2:电压:小型半导体制冷片TEC的电压根据不同的材料和应用场景有所不同,通常在几伏到几十伏之间。
3:热导率:小型半导体制冷片TEC的热导率是衡量其制冷效果的重要参数,通常在几瓦到几十瓦之间。
4:最大温差:小型半导体制冷片TEC的最大温差是衡量其制冷能力的指标,通常在几摄氏度到几十摄氏度之间。
5:工作温度范围:小型半导体制冷片TEC的工作温度范围是衡量其适应环境能力的指标,通常在负几十摄氏度到正几百摄氏度之间。
TEC有几种主要的性能参数,参数之间相互制约形成TEC特性曲线,举例说明,某厂家某系列,其中型号PT4-12-F2-3030-TA-W6的尺寸为A*B*C*D=30*30*34*3.2(单位mm)。
图中参数说明:
当热面温度为27℃时:
Qcmax(△T=0)为33W,就是当冷热面温差为0时,可转运最大热量33W;
△T max(Qc=0)为70.5℃,就是当冷热面转运0W热量时,可达最大温差70.5℃;
Imax(I@△T max)为4A,就是当在最大温差时,TEC可加载的最大电流为4A;
Vmax(V@△T max)为13.9V,就是当在最大温差时,TEC加载的最大电压为13.9V;
Module Resistance为3.24欧,TEC的电阻为3.24欧。
5:TEC选型
假设被散热器件需要散掉Qc =15W的热量,想要TEC冷端达到0℃左右,如何选型?
(注意:要考虑到TEC自身产生的热量)
可以选择上述型号PT4-12-F2-3030-TA-W6的TEC(当然也可以选择其他符合使用要求的TEC,需要读取TEC对应的特性曲线),那么根据热量-电流曲线1,此曲线为热端温度为27℃时对应的曲线,选取△T=30℃的那条曲线, 那么冷端面就为-3℃,符合0℃左右的要求。从曲线中,△T=30℃,15W时读取对应的工作电流约为2.6A。
再根据电压-电流曲线2,当△T=30℃,电流2.6A时,电压约为9.2V。
再根据COP-电流曲线3,当△T=30℃,电流2.6A时,COP约为0.6。这里的COP(Cooling Performance Rate)是热电制冷效率,前文中提到了TEC转运热量Qc的过程中,TEC本身也会产生热量Pin(电流电压的乘积),二者的比值就为COP,即COP=Qc/Pin,本例中,Qc =15W,COP=0.6,那么TEC的Pin=25W,计算得到TEC的散热端需要散掉的总热量为Qc+Pin=40W。
这里产生的总热量40W,就是风扇和散热器需要考虑的散热功率了!!!
再根据总热量-电压曲线4,当△T=30℃,电压9.2V时,总热量约为40W,验证了根据曲线3计算得到的总热量40W,如果计算的话,TEC的Pin=电流*电压=2.6A*9.2V=23.92W,考虑到读取曲线时,电流、电压、COP值都会有误差,23.92W与理论计算值25W非常接近,也是侧面得到了验证。
至此,TEC的所有工作参数都在特性曲线中得到了,散掉Qc =15W的热量,热端温度为27℃,△T=30℃,冷端面为-3℃,电流2.6A,电压9.2V,COP0.6,总热量40W。
6:实物TEC
单个TEC冷热端温差可达60~70℃,冷端温度达-20~-10℃,如果想获取的温差更大,冷端温度更低可将多个TEC堆叠使用。根究使用场景、方式的不同市面上可购买到各种形状的TEC。
7:手机散热器
为了提升手机的游戏体验,手机厂商和配件厂商都推出了内置TEC制冷片的散热背夹,夹持在手机背面,通过TEC制冷片导冷,并使用风扇将手机SOC高速运行时产生的热量散发出去,降低温升,保证流畅的游戏体验。