无人机避障——路径规划篇(一) JPS跳点搜索算法A*算法对比

news2024/11/7 7:39:09

JSP 跳点搜索算法与改进 A*算法对比

一、算法概述:

跳点搜索(Jump Point Search,JPS)算法:一种用于路径规划的启发式搜索算法。它主要用于在网格地图(如游戏地图、机器人运动规划地图等)中快速找到从起点到终点的最短路径。该算法在改进 A*算法的基础上进行了优化,通过跳过一些不必要的节点来提高搜索效率。

在网格地图中,跳点是那些能够让搜索路径跳过多个中间节点的特殊节点。这些跳点通常位于障碍物的拐角处或者是能够直接朝着目标方向前进的节点。例如,当一个节点的邻居节点能够让路径更直接地指向目标,且中间没有障碍物时,这个邻居节点就可能是一个跳点。

JPS 算法相比改进 A*算法能够显著减少搜索的节点数量。改进 A*算法需要遍历起点到终点之间的大量中间节点,而 JPS 算法通过识别跳点,能够跳过那些在最优路径上不太可能出现的节点,从而加快搜索速度。在复杂的大型网格地图中,这种效率提升尤为明显。在找到最短路径方面,JPS 算法和改进 A*算法具有相同的性能。只要启发式函数是可接受的(即不会高估节点到终点的成本),JPS 算法找到的路径也是最短路径,和改进 A*算法找到的路径长度相同。

[注意] JSP 跳点搜索算法采用曼哈顿距离,如果测试采用切比雪夫距离,速度会比用曼哈顿慢一些,但是也比改进A*算法快一个数量级左右。改进 A*算法采用切比雪夫距离测试。

二、测试结果:

任务目标:从左上角(0,0)坐标到右下角坐标,障碍物随机分布,但要保证有路径可以到达目标点,对算法的时间和轨迹长度进行记录分析。

(a)左边 JSP 算法,右边改进 A*算法,地图 50*50,障碍物数量:200

1) 时间优势明显:

从测试结果可以看出,JPS 算法在时间性能上明显优于改进 A*算法。在相同的测试环境下 ,JPS 算 法 的 运 行 时 间 仅 为 0.024201393127441406 秒 , 而 改 进 A*算 法则 需 要0.14796710014343262 秒。这表明 JPS 算法能够更快地找到路径,提高了系统的响应速度。

2) 轨迹长度一致:

测 试 结 果 还 显 示 ,JPS 算 法 和 改 进 A*算 法 规 划 出 的 轨 迹 长 度 一 致 , 均 为70.46803743153541。这说明 JPS 算法在保证高效性的同时,并没有牺牲路径的质量。它能够找到与传统算法相同的最短路径,确保了路径的最优性。

(b)左边 JSP 算法,右边改进 A*算法,地图 50*50,障碍物数量:400

1) 时间优势明显:

从测试结果可以看出,JPS 算法在时间性能上明显优于改进 A*算法。在相同的测试环境下 ,JPS 算 法 的 运 行 时 间 仅 为 0.016303300857543945 秒 , 而 改 进 A*算 法则 需 要0.29836177825927734 秒。这表明 JPS 算法能够更快地找到路径。

2) 轨迹长度近似:

测试结果还显示,JPS 算法的轨迹长度为 73.39696961966995,改进 A*算法规划出的轨迹长度 72.22539674441612,基本一致。

(c) 左边 JSP 算法,右边改进 A*算法,地图 50*50,障碍物数量:600

1) 时间优势明显:

从测试结果可以看出,JPS 算法在时间性能上明显优于改进 A*算法。在相同的测试环境下 ,JPS 算 法 的 运 行 时 间 仅 为 0.015148162841796875 秒 , 而 改 进 A*算 法则 需 要0.6297142505645752 秒。这表明 JPS 算法能够更快地找到路径,速度快了将近 40 倍。

2) 轨迹长度近似:

测试结果还显示,JPS 算法的轨迹长度为 76.32590180780447,改进 A*算法规划出的轨迹长度 75.05382386916231,基本一致,相差一个栅格距离左右。

(d) 左边 JSP 算法,右边改进 A*算法,地图 50*50,障碍物数量:800

1) 时间优势明显:

从测试结果可以看出,JPS 算法在时间性能上明显优于改进 A*算法。在相同的测试环境下 ,JPS 算 法 的 运 行 时 间 仅 为 0.013298988342285156 秒 , 而 改 进 A*算 法则 需 要0.48139333724975586 秒。这表明 JPS 算法能够更快地找到路径,速度快了将近 40 倍。

2) 轨迹长度更优:

测试结果还显示,JPS 算法的轨迹长度为 74.56854249492375,改进 A*算法规划出的轨迹长度 75.15432893255065,JSP 轨迹长度更优,轨迹距离基本一致。

(e) 左边 JSP 算法,右边改进 A*算法,地图 50*50,障碍物数量:1000

1) 时间优势明显:

从测试结果可以看出,JPS 算法在时间性能上明显优于改进 A*算法。在相同的测试环境下 ,JPS 算 法 的 运 行 时 间 仅 为 0.024592161178588867 秒 , 而 改 进 A*算 法则 需 要2.0019431114196777 秒。这表明 JPS 算法能够更快地找到路径,速度快了将近 80 倍。

2) 轨迹长度更优:

测试结果还显示,JPS 算法的轨迹长度为 83.74011537017756,改进 A*算法规划出的轨迹长度 85.39696961966993,JSP 轨迹长度更优,更加明显。

(f) 左边 JSP 算法,右边改进 A*算法,地图 100*100,障碍物数量:1000

1) 时间优势明显:

从测试结果可以看出,JPS 算法在时间性能上明显优于改进 A*算法。在相同的测试环境下 ,JPS 算 法 的 运 行 时 间 仅 为 0.057212114334106445 秒 , 而 改 进 A*算 法则 需 要1.4029386043548584 秒。这表明 JPS 算法能够更快地找到路径,速度快了将近 30倍。

2) 轨迹长度较长:

测试结果还显示,JPS 算法的轨迹长度为 149.6223663640861,改进 A*算法规划出的轨迹长度 143.5218613006978,改进 A*算法轨迹长度更优,更加明显。

(g) 左边 JSP 算法,右边改进 A*算法,地图 100*100,障碍物数量:2000

1) 时间优势明显:

从测试结果可以看出,JPS 算法在时间性能上明显优于改进 A*算法。在相同的测试环境下 ,JPS 算 法 的 运 行 时 间 仅 为 0.04240727424621582 秒 , 而 改 进 A*算 法 则需 要5.168658018112183 秒。这表明 JPS 算法能够更快地找到路径,速度超过了 100 倍。

2) 轨迹长度较长:

测试结果还显示,JPS 算法的轨迹长度为 152.30865786510137,改进 A*算法规划出的轨迹长度 148.45079348883237,改进 A*算法轨迹长度更优,但是差距不大。

(h) 左边 JSP 算法,右边改进 A*算法,地图 100*100,障碍物数量:4000

1) 时间优势明显:

从测试结果可以看出,JPS 算法在时间性能上明显优于改进 A*算法。在相同的测试环境下 ,JPS 算 法 的 运 行 时 间 仅 为 0.03251481056213379 秒 , 而 改 进 A*算 法 则需 要8.00110912322998 秒。这表明 JPS 算法能够更快地找到路径,速度超过了 260 倍。

2) 轨迹长度接近:

测试结果还显示,JPS 算法的轨迹长度为 158.99494936611666,改进 A*算法规划出的轨迹长度 157.86500705120545,差距不大。

(i)左边 JSP 算法,右边改进 A*算法,地图 100*100,障碍物数量:5000

1) 时间优势明显:

从测试结果可以看出,JPS 算法在时间性能上明显优于改进 A*算法。在相同的测试环境下 ,JPS 算 法 的 运 行 时 间 仅 为 0.18164896965026855 秒 , 而 改 进 A*算 法 则需 要20.16622757911682 秒。这表明 JPS 算法能够更快地找到路径,速度超过了 110 倍。

2) 轨迹长度较长:

测试结果还显示,JPS 算法的轨迹长度为 196.45079348883257,改进 A*算法规划出的轨迹长度 182.6934341759518,改进 A*算法距离上具有优势。

三、结论:

        JPS 算法在路径规划中展现出明显优势。与改进 A*算法相比,JPS 算法运算时间极快,无论地图成倍扩大还是障碍物成数量级增加,其运算速度都保持较高水平,而改进 A*算法在地图和障碍物变复杂后,计算速度落后 JPS 算法一到两个数量级。从轨迹长度看,虽然任务复杂度提升后 JPS 轨迹长度整体略长于改进 A*算法,但差距不大。JPS 算法通过识别跳点,快速跳过不必要节点,减少搜索空间,提高搜索效率,同时保证找到的路径为最短路径,具有高效性、准确性和适应性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2229708.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解决Linux安装Anaconda后出现的conda: command not found问题

参考链接:解决Linux安装Anaconda后出现的conda: command not found问题-百度开发者中心

AI直播带货场景切换模块的搭建!

AI直播带货,作为电商领域的新宠,正以其独特的魅力和高效的营销手段,引领着销售模式的新变革。 在AI直播带货中,场景切换模块是不可或缺的一部分,它不仅能够提升观众的观看体验,还能更好地展示商品&#xf…

15 Docker容器存储架构:docker存储驱动简介

文章目录 一、Docker 存储驱动探索1.1 存储驱动1.2 存储驱动方式1.3 非持久化存储1.4 持久化存储一、Docker 存储驱动探索 1.1 存储驱动 Storage driver处理各镜像层及容器层的处理细节,实现了多层数据的堆叠,为用户提供了多层数据合并后的统一视图。 [superman@docker ~]$…

Aicbo:一键生成高质量画作,适合初学者的AI绘画助手

越来越多的智能工具开始进入人们的视野,它们不仅简化了创作流程,还极大地提高了作品的质量。在这一背景下,Aicbo作为一款新兴的AI绘画工具,以其独特的优势和免费试用的政策,迅速获得了广泛的关注和好评。本文将从多个角…

STM32 从0开始系统学习5

目录 STM32 GPIO输入的四种模式 Practice And Usage 练习与封装 Detailed And Reference 更加具体的说明 输入浮空模式 输入上拉模式 输入下拉模式 模拟功能 我们下面聊一聊输入的事情,输入指的是我们的处理器从外部端口接受外设发过来的信号。在我们没有接…

使用Git进行版本控制的最佳实践

文章目录 Git简介基本概念仓库(Repository)提交(Commit)分支(Branching) 常用命令初始化仓库添加文件提交修改查看状态克隆仓库分支操作合并分支推送更改 最佳实践使用有意义的提交信息定期推送至远程仓库使…

冒泡排序和二分查找--go

冒泡排序的逻辑 二分查找的逻辑 func bubbleSort(arr *[5]int){//冒泡排序fmt.Println(*arr)temp : 0for j : len(*arr); j > 0; j-- {for i : 0; i < j-1; i {temp (*arr)[i]if((*arr)[i] > (*arr)[i1]){(*arr)[i] (*arr)[i1](*arr)[i1] temp}}} }func binaryF…

flutter区别于vue的写法

View.dart 页面渲染&#xff1a; 类似于vue里面使用 <template> <div> <span> <textarea>等标签绘制页面, flutter 里面则是使用不同的控件来绘制页面 样式 与传统vue不同的是 flutter里面没有css/scss样式表&#xff0c; Flutter的理念是万物皆…

电影《焚城》全国上映 王丹妮诠释新时代女性力量

今日&#xff0c;电影《焚城》全国上映&#xff0c;该片由刘德华、白宇、莫文蔚和王丹妮主演&#xff0c;以一场由高强度放射性物质铯137泄漏引发的城市灾难为背景&#xff0c;深刻描绘了人们在生死存亡关头的抉择与抗争。 王丹妮在片中饰演飒爽独立、智慧勇敢的消防队长Madam …

uniapp:启动界面关闭时长控制

代码控制关闭启动界面 App启动后不会自动关闭启动界面&#xff0c;需要在代码中调用plus.navigator.closeSplashscreen关闭启动界面。"app-plus" : {"splashscreen" : {"alwaysShowBeforeRender" : false,"autoclose" : false,}, }很多…

Three.js 快速入门构建你的第一个 3D 应用

![ 开发领域&#xff1a;前端开发 | AI 应用 | Web3D | 元宇宙 技术栈&#xff1a;JavaScript、React、Three.js、WebGL、Go 经验经验&#xff1a;6年 前端开发经验&#xff0c;专注于图形渲染和AI技术 开源项目&#xff1a;github 晓智元宇宙、数字孪生引擎、前端面试题 大家好…

二:java 基础知识(2)-- 初始java/语法基础

目录 idea中文插件 第一个 Java 程序 Java数据类型&#xff0c;常量与变量 1. 数据类型 1.1 基本数据类型 1.2 引用数据类型 2. 常量 2.1 特性 2.2 定义常量 ​编辑 3. 变量 3.1 变量的定义与初始化 3.2 变量的类型 局部变量&#xff1a;在方法内声明的变量&#xff0…

【AAOS】【源码分析】CarSystemUI -- CarSystemBar

CarSystemBar不像Android手机那样固定的顶部“状态栏”和底部“导航栏”,而是将StatusBar和NavigationBar都统称为SystemBar,可以通过如下配置为每侧最多配置一个“系统栏”。 packages/apps/Car/SystemUI/res/values/config.xml<!-- Configure which system bars should …

企业物流管理数据仓库建设的全面指南

文章目录 一、物流管理目标二、总体要求三、数据分层和数据构成&#xff08;1&#xff09;数据分层&#xff08;2&#xff09;数据构成 四、数据存储五、数据建模和数据模型&#xff08;1&#xff09;数据建模&#xff08;2&#xff09;数据模型 六、总结 在企业物流管理中&…

多线程学习篇六:park / unpark

1. API LockSupport.park()&#xff1a;暂停当前线程LockSupport.unpark (线程对象)&#xff1a;恢复某个线程的运行 1.1 先 park 再 unpark main 线程睡眠时间大于 t1 线程睡眠时间 Slf4j(topic "c.Test01") public class Test01 {public static void main(Str…

计算机网络:网络层 —— IPv4 数据报的首部格式

文章目录 IPv4数据报的首部格式IPv4数据报分片生存时间 TTL字段协议字段首部检验和字段 IPv4数据报的首部格式 IPv4 数据报的首部格式及其内容是实现 IPv4 协议各种功能的基础。 在 TCP/IP 标准中&#xff0c;各种数据格式常常以32比特(即4字节)为单位来描述 固定部分&#x…

基于SSM演出道具租赁系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;商家管理&#xff0c;道具类型管理&#xff0c;道具出租管理&#xff0c;租赁订单管理&#xff0c;道具归还管理&#xff0c;系统管理 商家账号功能包括&#xff1a;系统首页&…

《使用Gin框架构建分布式应用》阅读笔记:p272-p306

《用Gin框架构建分布式应用》学习第15天&#xff0c;p272-p306总结&#xff0c;总35页。 一、技术总结 1.TDD(test-driven development) 虽然经常看到TDD这个属于&#xff0c;从本人的工作经历看&#xff0c;实际开发中用得相对较少。 2.unitest(单元测试) go语言开发中&a…

三种SPI机制的了解及使用

文章目录 1.SPI机制概念2.Java SPI2.1 创建一个项目&#xff0c;并创建如下模块2.2 db-api模块2.3 mysql-impl模块2.4 oracle-impl模块2.5 main-project模块 3.Spring SPI4.Dubbo SPI 1.SPI机制概念 SPI全程Service Provider Interface&#xff0c;是一种服务发现机制。 SPI的…

【Linux系统编程】第四十弹---深入理解操作系统:信号捕捉、可重入函数、volatile关键字与SIGCHLD信号解析

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】 目录 1、捕捉信号 1.1、内核如何实现信号的捕捉 1.2、内核态与用户态 1.3.1、用户态&#xff08;User Space&#xff09; 1.3.2、…