OpenCV基本操作(python开发)——(5)轮廓处理

news2024/11/5 7:13:10

OpenCV基本操作(python开发)——(1) 读取图像、保存图像
OpenCV基本操作(python开发)——(2)图像色彩操作
OpenCV基本操作(python开发)——(3)图像形态操作
OpenCV基本操作(python开发)——(4)图像梯度处理
OpenCV基本操作(python开发)——(5)轮廓处理
OpenCV基本操作(python开发)——(6)视频基本处理
OpenCV基本操作(python开发)——(7)实现图像校正
OpenCV基本操作(python开发)——(8)实现芯片瑕疵检测

OpenCV——轮廓处理

边缘检测虽然能够检测出边缘,但边缘是不连续的,检测到的边缘并不是一个整体。图像轮廓是指将边缘连接起来形成的一个整体,用于后续的计算。

OpenCV提供了查找图像轮廓的函数cv2.findContours(),该函数能够查找图像内的轮廓信息,而函数cv2.drawContours()能够将轮廓绘制出来。图像轮廓是图像中非常重要的一个特征信息,通过对图像轮廓的操作,我们能够获取目标图像的大小、位置、方向等信息。一个轮廓对应着一系列的点,这些点以某种方式表示图像中的一条曲线。

一、查找并绘制轮廓

  • 查找轮廓函数:cv2.findContours

    • 语法格式:image,contours,hierarchy=cv2.findContours(image,mode,method)

    • 返回值

      • image:与函数参数中的原始图像image一致
      • contours:返回的轮廓。该返回值返回的是一组轮廓信息,每个轮廓都是由若干个点所构成的(每个轮廓为一个list表示)。例如,contours[i]是第i个轮廓(下标从0开始),contours[i][j]是第i个轮廓内的第j个点
      • hierarchy:图像的拓扑信息(反映轮廓层次)。图像内的轮廓可能位于不同的位置。比如,一个轮廓在另一个轮廓的内部。在这种情况下,我们将外部的轮廓称为父轮廓,内部的轮廓称为子轮廓。按照上述关系分类,一幅图像中所有轮廓之间就建立了父子关系。每个轮廓contours[i]对应4个元素来说明当前轮廓的层次关系。其形式为:[Next,Previous,First_Child,Parent],分别表示后一个轮廓的索引编号、前一个轮廓的索引编号、第1个子轮廓的索引编号、父轮廓的索引编号
    • 参数

      • image:原始图像。灰度图像会被自动处理为二值图像。在实际操作时,可以根据需要,预先使用阈值处理等函数将待查找轮廓的图像处理为二值图像。
      • mode:轮廓检索模式,有以下取值和含义:
      取值含义
      cv2.RETR_EXTERNAL只检测外轮廓
      cv2.RETR_LIST对检测到的轮廓不建立等级关系
      cv2.RETR_CCOMP检索所有轮廓并将它们组织成两级层次结构,上面的一层为外边界,下面的一层为内孔的边界
      cv2.RETR_TREE建立一个等级树结构的轮廓
      • method:轮廓的近似方法,主要有如下取值:
      取值含义
      cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))=1
      cv2.CHAIN_APPROX_SIMPLE压缩水平方向、垂直方向、对角线方向的元素,只保留该方向的终点坐标
      cv2.CHAIN_APPROX_TC89_L1使用teh-Chinl chain近似算法的一种风格
      cv2.CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain近似算法的一种风格
    • 注意事项

      • 待处理的源图像必须是灰度二值图
      • 都是从黑色背景中查找白色对象。因此,对象必须是白色的,背景必须是黑色的
      • 在OpenCV 4.x中,函数cv2.findContours()仅有两个返回值
  • 绘制轮廓:drawContours函数

    • 语法格式:image=cv2.drawContours(image, contours,contourIdx, color)
    • 参数
      • image:待绘制轮廓的图像
      • contours:需要绘制的轮廓,该参数的类型与函数 cv2.findContours()的输出 contours 相同,都是list类型
      • contourIdx:需要绘制的边缘索引,告诉函数cv2.drawContours()要绘制某一条轮廓还是全部轮廓。如果该参数是一个整数或者为零,则表示绘制对应索引号的轮廓;如果该值为负数(通常为“-1”),则表示绘制全部轮廓。
      • color:绘制的颜色,用BGR格式表示
# 查找图像轮廓
import cv2
import numpy as np

im = cv2.imread("../data/3.png")
cv2.imshow("orig", im)

gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

# 图像二值化处理,将大于阈值的设置为最大值,其它设置为0
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 查找图像边沿:cv2.findContours
img, contours, hierarchy = cv2.findContours(binary,  # 二值化处理后的图像
                                            cv2.RETR_EXTERNAL,  # 只检测外轮廓
                                            cv2.CHAIN_APPROX_NONE)  # 存储所有的轮廓点
# 打印所有轮廓值
arr_cnt = np.array(contours)
print(arr_cnt[0].shape)
print(arr_cnt[1].shape)
print(arr_cnt[2].shape)
print(arr_cnt[3].shape)
# print(arr_cnt[0])

# 绘制边沿
im_cnt = cv2.drawContours(im,  # 绘制图像
                          contours,  # 轮廓点列表
                          -1,  # 绘制全部轮廓
                          (0, 0, 255),  # 轮廓颜色:红色
                          2)  # 轮廓粗细
cv2.imshow("im_cnt", im_cnt)

cv2.waitKey()
cv2.destroyAllWindows()

执行结果:

在这里插入图片描述

二、绘制矩形包围框

函数cv2.boundingRect()能够绘制轮廓的矩形边界。该函数的语法格式为:

retval = cv2.boundingRect(array)  # 格式一
x,y,w,h = cv2.boundingRect(array) # 格式二
"""
参数:
	array:是灰度图像或轮廓
返回值:
	retval:表示返回的矩形边界的左上角顶点的坐标值及矩形边界的宽度和高度
	x, y, w, h: 矩形边界左上角顶点的x坐标、y坐标、宽度、高度
"""

代码:

# 绘制图像矩形轮廓
import cv2
import numpy as np

im = cv2.imread("../data/cloud.png", 0)
cv2.imshow("orig", im)

# 提取图像轮廓
ret, binary = cv2.threshold(im, 127, 255, cv2.THRESH_BINARY)
img, contours, hierarchy = cv2.findContours(binary,
                                            cv2.RETR_LIST,  # 不建立等级关系
                                            cv2.CHAIN_APPROX_NONE)  # 存储所有的轮廓点
print("contours[0].shape:", contours[0].shape)

# 返回轮廓定点及边长
x, y, w, h = cv2.boundingRect(contours[0])  # 计算矩形包围框的x,y,w,h
print("x:", x, "y:", y, "w:", w, "h:", h)

# 绘制矩形包围框
brcnt = np.array([[[x, y]], [[x + w, y]], [[x + w, y + h]], [[x, y + h]]])
cv2.drawContours(im,  # 绘制图像
                 [brcnt],  # 轮廓点列表
                 -1,  # 绘制全部轮廓
                 (255, 255, 255),  # 轮廓颜色:白色
                 2)  # 轮廓粗细

cv2.imshow("result", im)  # 显示绘制后的图像

cv2.waitKey()
cv2.destroyAllWindows()

执行结果:

在这里插入图片描述

三、绘制圆形包围圈

函数 cv2.minEnclosingCircle()通过迭代算法构造一个对象的面积最小包围圆形。该函数的语法格式为:

center,radius=cv2.minEnclosingCircle(points)
"""
参数:
	points: 轮廓数组
返回值:
	center: 最小包围圆形的中心
	radius: 最小包围圆形的半径
"""

代码:

# 绘制最小圆形
import cv2
import numpy as np

im = cv2.imread("../data/cloud.png", 0)
cv2.imshow("orig", im)

# 提取图像轮廓
ret, binary = cv2.threshold(im, 127, 255, cv2.THRESH_BINARY)
img, contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)

(x, y), radius = cv2.minEnclosingCircle(contours[0])
center = (int(x), int(y))
radius = int(radius)
cv2.circle(im, center, radius, (255, 255, 255), 2)  # 绘制圆

cv2.imshow("result", im)  # 显示绘制后的图像

cv2.waitKey()
cv2.destroyAllWindows()

执行结果:

在这里插入图片描述

四、绘制最佳拟合椭圆

函数cv2.fitEllipse()可以用来构造最优拟合椭圆。该函数的语法格式是:

retval=cv2.fitEllipse(points)
"""
参数:
	points: 轮廓
返回值:
	retval: 为RotatedRect类型的值,包含外接矩形的质心、宽、高、旋转角度等参数信息,这些信息正好与椭圆的中心点、轴长度、旋转角度等信息吻合
"""

代码:

# 绘制最优拟合椭圆
import cv2
import numpy as np

im = cv2.imread("../data/cloud.png")
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
cv2.imshow("orig", gray)

# 提取图像轮廓
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
img, contours, hierarchy = cv2.findContours(binary,
                                            cv2.RETR_LIST,
                                            cv2.CHAIN_APPROX_NONE)

ellipse = cv2.fitEllipse(contours[0])  # 拟合最优椭圆
print("ellipse:", ellipse)
cv2.ellipse(im, ellipse, (0, 0, 255), 2)  # 绘制椭圆

cv2.imshow("result", im)  # 显示绘制后的图像

cv2.waitKey()
cv2.destroyAllWindows()

执行结果:

在这里插入图片描述

五、逼近多边形

函数cv2.approxPolyDP()用来构造指定精度的逼近多边形曲线。该函数的语法格式为:

approxCurve = cv2.approxPolyDP(curve,epsilon,closed)
"""
参数:
	curve: 轮廓
	epsilon: 精度,原始轮廓的边界点与逼近多边形边界之间的最大距离
	closed: 布尔类型,该值为True时,逼近多边形是封闭的;否则,逼近多边形是不封闭的
返回值:
	approxCurve: 逼近多边形的点集
"""

代码:

# 构建多边形,逼近轮廓
import cv2
import numpy as np

im = cv2.imread("../data/cloud.png")
cv2.imshow("im", im)
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

# 提取图像轮廓
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
img, contours, hierarchy = cv2.findContours(binary,
                                            cv2.RETR_LIST,
                                            cv2.CHAIN_APPROX_NONE)
# 精度一
adp = im.copy()
epsilon = 0.005 * cv2.arcLength(contours[0], True)  # 精度,根据周长计算
approx = cv2.approxPolyDP(contours[0], epsilon, True)  # 构造多边形
adp = cv2.drawContours(adp, [approx], 0, (0, 0, 255), 2)  # 绘制多边形
cv2.imshow("result_0.005", adp)
# 精度二
adp2 = im.copy()
epsilon = 0.01 * cv2.arcLength(contours[0], True)  # 精度,根据周长计算
approx = cv2.approxPolyDP(contours[0], epsilon, True)  # 构造多边形
adp = cv2.drawContours(adp2, [approx], 0, (0, 0, 255), 2)  # 绘制多边形
cv2.imshow("result_0.01", adp2)

cv2.waitKey()
cv2.destroyAllWindows()

执行结果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2229477.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

常用的查询mysql配置命令

1. 查看数据库版本信息 SELECT VERSION();2. 查看数据库所有变量和值 SHOW VARIABLES3. 查询数据库是否区分大小写 SHOW VARIABLES LIKE lower_case_table_names;查询数据库是否支持大小写lower_case_table_names 被设置为 1,即表名不区分大小写。如果值为 1&…

企业数据泄露安全演练(分享)

该文章主要分享作者在XXX企业内部做的一次【数据泄露安全演练】,涉及演练背景、目的、演练流程、剧本设定、预期行为、结果等等。 以下是完整的演练方案,有不足的地方希望大家指出!! 需要原版方案电子版的可以联系作者获取。 演练…

品牌控价的执行技巧

在当今竞争激烈的商业世界中,品牌的发展犹如在波涛汹涌的大海中航行,而价格管控,无疑是那保驾护航的关键舵手,简称控价。这一举措,绝非仅仅着眼于品牌自身的狭隘利益,实则肩负着更为深远的使命,…

一文详解精细化工行业持续增长的策略与路径解析

随着全球经济的快速发展和科技的不断进步,精细化工行业正面临着前所未有的挑战和机遇。在这个过程中,数字化转型已成为推动行业持续增长的关键因素。精细化工行业,作为化学工业的一个重要分支,其产品广泛应用于医药、农药、涂料、…

akshare股票涨跌幅自定义范围查询:A股、港股、美股

参看:https://stock.hexun.com/2024-10-31/215251914.html 涨幅计算公式:(当前价格 - 上一个交易日收盘价) 上一个交易日收盘价 100% 。 跌幅计算公式:(上一个交易日收盘价 - 当前价格) 上一个…

基于Pycharm和Django模型技术的数据迁移

1.配置数据库 在trip_server/settings.py中修改配置: 其格式可访问官网:Settings | Django documentation | Django 1.1 配置数据库 文件地址:trip_server/settings.py 配置前需要创建(NaviCat)个人数据库 "…

linux命令行的艺术

文章目录 前言基础日常使用文件及数据处理系统调试单行脚本冷门但有用仅限 OS X 系统仅限 Windows 系统在 Windows 下获取 Unix 工具实用 Windows 命令行工具Cygwin 技巧 更多资源免责声明 熟练使用命令行是一种常常被忽视,或被认为难以掌握的技能,但实际…

C++学习路线(数据库部分)四

表的插入 插入数据记录是常见的数据操作,可以显示向表中增加的新的数据记录。在MySQL中可以通过“INSERT INTO”语句来实现插入数据记录,该SQL语句可以通过如下4种方式使用:插入完整数据记录、插入部分数据记录、插入多条数据记录和插入JSON…

供应商图纸外发:如何做到既安全又高效?

供应商跟合作伙伴、客户之间会涉及到图纸外发的场景,这是一个涉及数据安全、效率及合规性的重要环节。供应商图纸发送流程一般如下: 1.申请与审批 采购人员根据需要提出发放图纸的申请并提交审批; 采购部负责人审批发放申请,确…

代码随想录之链表刷题总结

目录 1.链表理论基础 2.移除链表元素 3.设计链表 4.翻转链表 5.两两交换链表中的节点 6.删除链表中的第N个节点 7.链表相交 8.环形链表 1.链表理论基础 链表是一种通过指针串联在一起的线性结构,每一个节点由两部分组成,一个是数据域一个是指针域…

Notepad++ 插件安装,The plugin package is not found问题

问题: 今天想用自己电脑的Notepad来分析一下几个json文件,后续工作传输都使用json通信,公司装了jsonView插件都没什么问题。自己电脑装了就问题百出: 本人版本: 揣测1: 是不是管理员权限的问题,…

【操作系统】每日 3 题(三)

✍个人博客:https://blog.csdn.net/Newin2020?typeblog 📣专栏地址:https://blog.csdn.net/newin2020/category_12820365.html 📚专栏简介:在这个专栏中,我将会分享 C 面试中常见的面试题给大家~ ❤️如果…

【万兴科技-注册_登录安全分析报告】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…

duilib 进阶 之 TileListBox 列表

目录 一、TileListBox 1、样式 1)、整体列表分列设置 2)、列表项样式设置 3)、选中后出现√号,horver时 出现边框色 的实例 2、代码 1)、普通动态添加列表项 2)、列表项样式中有自定义控件时 3)、获得选中项 一、TileListBox Tile [taɪl] ,瓦片 棋子 Ti…

专线物流公共服务平台:数据驱动,标准引领,共创金融双赢新时代

专线物流公共服务平台:数据驱动,标准引领,共创金融双赢新时代 在当今这个数据驱动、标准引领、金融赋能的经济发展新时代,专线物流作为商贸流通领域的重要一环,正面临着前所未有的机遇与挑战。为应对复杂多变的市场环…

日本Harmonic行星减速机HPG系列 薄壁弹性齿轮技术实现低背隙控制

科技飞速发展,工业领域对于设备的精度和刚性要求越来越高。日本Harmonic Drive Systems 公司凭借其在精密传动领域的深厚积累与不断创新,成功开发出一款具有高精度、高刚性的伺服电机用行星减速机 ——HPG系列,为众多行业带来了全新的精密传动…

win10系统cad2007安装提示缺少net framework 3.5安装错误怎么修复

浏览器地址栏输入www.dnz9.com远程解决netframework问题 由于AutoCAD 2007是一款比较老的软件,它可能与最新的Windows操作系统存在兼容性问题。所以我们在安装的cad2007的时候会提示“未安装net缺少该组件时不能安装”。在Windows 10上安装AutoCAD 2007时遇到缺少.N…

Flash的语音ic型号有哪些?

深圳唯创知音电子有限公司在语音技术领域具有深厚的积累,其Flash语音IC产品凭借高性能和广泛的应用领域,在市场上占据了一席之地。以下是对该公司Flash语音IC产品的详细介绍: 一、产品概述 Flash语音IC是一种采用Flash存储技术的语音芯片&…

我在命令行下学日语

同一个动作重复 300 遍,肌肉就会有记忆,重复 600 遍,脊柱就会有记忆,学完五十音图不熟练,经常遗忘或者要好几秒才想得起来一个怎么办?没关系,我做了个命令行下的小游戏 KanaQuiz 来帮助你记忆&a…

【GESP】C++三级练习BCQM3091,选择题判定

GESP三级字符串string和一级知识点if-else分支语句练习,非常基础,对于我孩子来说练习重点在一级部分,字符串只是碰巧遇到了。 题目题解详见:https://www.coderli.com/gesp-3-bcqm3091/ 【GESP】C三级练习BCQM3091,选…