基于卷积神经网络的棉花病虫害识别与防治系统,resnet50,mobilenet模型【pytorch框架+python源码】

news2024/11/25 15:58:27

 更多目标检测和图像分类识别项目可看我主页其他文章

功能演示:

棉花病害识别与防治系统,卷积神经网络,resnet50,mobilenet【pytorch框架,python源码】_哔哩哔哩_bilibili

(一)简介

基于卷积神经网络的棉花病虫害识别与防治系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标图表等。

该项目有两个可选模型:resnet50和mobilenet,两个模型都在项目中;GUI界面由pyqt5设计和实现,界面中给出模型预测病害的结果、概率和对应的防治措施。此项目的两个模型可做对比分析,增加工作量。

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:

超详细的pycharm+anaconda搭建python虚拟环境_pycharm虚拟环境搭建-CSDN博客

(二)项目介绍

1. 项目结构

​​​​

该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单

以训练resnet50模型为例:

第一步:修改model_resnet50.py的数据集路径,模型名称、模型训练的轮数

​ 

第二步:模型训练和验证,即直接运行model_resnet50.py文件

第三步:使用模型,即运行gui_chinese.py文件即可通过GUI界面来展示模型效果

2. 数据结构

​​​​​

部分数据展示: 

​​​​

3.GUI界面(技术栈:pyqt5+python+opencv) 
1)gui初始界面 

2)gui分类、识别界面 

​​​​

4.模型训练和验证的一些指标及效果
​​​​​1)模型训练和验证的准确率曲线,损失曲线

​​​​​2)热力图

​​3)准确率、精确率、召回率、F1值

4)模型训练和验证记录

​​

(三)代码

由于篇幅有限,只展示核心代码

    def main(self, epochs):
        # 记录训练过程
        log_file_name = './results/resnet50训练和验证过程.txt'
        # 记录正常的 print 信息
        sys.stdout = Logger(log_file_name)
 
        print("using {} device.".format(self.device))
        # 开始训练,记录开始时间
        begin_time = time()
        # 加载数据
        train_loader, validate_loader, class_names, train_num, val_num = self.data_load()
        print("class_names: ", class_names)
        train_steps = len(train_loader)
        val_steps = len(validate_loader)
        # 加载模型
        model = self.model_load()  # 创建模型
        # 修改全连接层的输出维度
        in_channel = model.fc.in_features
        model.fc = nn.Linear(in_channel, len(class_names))
 
        # 模型结构可视化
        x = torch.randn(16, 3, 224, 224)  # 随机生成一个输入
        # 模型结构保存路径
        model_visual_path = 'results/resnet50_visual.onnx'
        # 将 pytorch 模型以 onnx 格式导出并保存
        torch.onnx.export(model, x, model_visual_path)  
        # netron.start(model_visual_path)  # 浏览器会自动打开网络结构
 
 
        # 将模型放入GPU中
        model.to(self.device)
        # 定义损失函数
        loss_function = nn.CrossEntropyLoss()
        # 定义优化器
        params = [p for p in model.parameters() if p.requires_grad]
        optimizer = optim.Adam(params=params, lr=0.0001)
 
        train_loss_history, train_acc_history = [], []
        test_loss_history, test_acc_history = [], []
        best_acc = 0.0
 
        for epoch in range(0, epochs):
            # 下面是模型训练
            model.train()
            running_loss = 0.0
            train_acc = 0.0
            train_bar = tqdm(train_loader, file=sys.stdout)
            # 进来一个batch的数据,计算一次梯度,更新一次网络
            for step, data in enumerate(train_bar):
                # 获取图像及对应的真实标签
                images, labels = data
                # 清空过往梯度
                optimizer.zero_grad()
                # 得到预测的标签
                outputs = model(images.to(self.device))
                # 计算损失
                train_loss = loss_function(outputs, labels.to(self.device))
                # 反向传播,计算当前梯度
                train_loss.backward()
                # 根据梯度更新网络参数
                optimizer.step()  
 
                # 累加损失
                running_loss += train_loss.item()
                # 每行最大值的索引
                predict_y = torch.max(outputs, dim=1)[1]  
                # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
                train_acc += torch.eq(predict_y, labels.to(self.device)).sum().item()
                # 更新进度条
                train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                         epochs,
                                                                         train_loss)
            # 下面是模型验证
            # 不启用 BatchNormalization 和 Dropout,保证BN和dropout不发生变化
            model.eval()
            # accumulate accurate number / epoch
            val_acc = 0.0  
            testing_loss = 0.0
            # 张量的计算过程中无需计算梯度
            with torch.no_grad():  
                val_bar = tqdm(validate_loader, file=sys.stdout)
                for val_data in val_bar:
                    # 获取图像及对应的真实标签
                    val_images, val_labels = val_data
                    # 得到预测的标签
                    outputs = model(val_images.to(self.device))
                    # 计算损失
                    val_loss = loss_function(outputs, val_labels.to(self.device))  
                    testing_loss += val_loss.item()
                    # 每行最大值的索引
                    predict_y = torch.max(outputs, dim=1)[1]  
                    # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
                    val_acc += torch.eq(predict_y, val_labels.to(self.device)).sum().item()
 
            train_loss = running_loss / train_steps
            train_accurate = train_acc / train_num
            test_loss = testing_loss / val_steps
            val_accurate = val_acc / val_num
 
            train_loss_history.append(train_loss)
            train_acc_history.append(train_accurate)
            test_loss_history.append(test_loss)
            test_acc_history.append(val_accurate)
 
            print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
                  (epoch + 1, train_loss, val_accurate))
            # 保存最佳模型
            if val_accurate > best_acc:
                best_acc = val_accurate
                torch.save(model.state_dict(), self.model_name)
 
        # 记录结束时间
        end_time = time()
        run_time = end_time - begin_time
        print('该循环程序运行时间:', run_time, "s")
        # 绘制模型训练过程图
        self.show_loss_acc(train_loss_history, train_acc_history,
                           test_loss_history, test_acc_history)
        # 画热力图
        test_real_labels, test_pre_labels = self.heatmaps(model, validate_loader, class_names)
        # 计算混淆矩阵
        self.calculate_confusion_matrix(test_real_labels, test_pre_labels, class_names)

​​​​​(四)总结

以上即为整个项目的介绍,整个项目主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面和各种模型指标图表等。

整套项目资料齐全,一步到位,省心省力。

项目运行过程如出现问题,请及时交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2228598.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

成都世运会志愿者招募报名流程及证件照制作方法

成都世运会志愿者招募正在如火如荼地进行中,许多热心公益的青年们纷纷报名参与。本文将详细介绍如何通过官方渠道报名,并使用手机来自行制作符合要求的4:5比例的白底证件照。 一、志愿者报名流程概述首先,报名成都世运会志愿者需要通过官方指…

Java 输入/输出(I/O)操作(10/30)

目录 Java 输入/输出(I/O)操作 1. Java I/O 类体系结构 2. 文件读写操作 2.1 使用 FileInputStream 和 FileOutputStream 进行字节流读写 2.2 使用 FileReader 和 FileWriter 进行字符流读写 3. 缓冲流的使用 3.1 使用 BufferedReader 和 Buffere…

Unity XR Interaction Toolkit 开发教程(1):OpenXR 与 XRI 概述【3.0 以上版本】

文章目录 📕Unity XR 开发架构🔍底层插件(对接硬件)🔍高层 SDK(面向应用交互层) 📕OpenXR📕XR Interaction Toolkit🔍特点🔍XRI 能够实现的交互类…

Nginx防盗链配置

1. 什么是盗链? 盗链是指服务提供商自己不提供服务的内容,通过技术手段绕过其它有利益的最终用户界面(如广告),直接在自己的网站上向最终用户提供其它服务提供商的服务内容,骗取最终用户的浏览和点击率。受益者不提供…

使用Scrapy框架爬取博客信息

随着网络的发展,越来越多有价值的信息存储在网络上。使用爬虫技术可以从这些信息源中提取出有用的数据。本文将介绍如何使用Python中的Scrapy框架来爬取博客站点上的文章标题、作者以及阅读数,并将其保存到JSON文件中。 一、项目背景 Scrapy是一个快速…

Vue2.0 通过vue-pdf-signature@4.2.7和pdfjs-dist@2.5.207实现PDF预览

1.安装依赖 npm install pdfjs-dist2.5.207 --savenpm install vue-pdf-signature4.2.7 --save2.在.vue文件中 script 部分引入 <script> import * as PDFJS from pdfjs-dist PDFJS.GlobalWorkerOptions.workerSrc require(pdfjs-dist/build/pdf.worker.js);//解决pdf…

A4-C四驱高防变电站巡检机器人

在电力行业数字化、智能化转型进程中&#xff0c;搭载多模态成像传感器的变电站巡检机器人、视频监控设备逐渐取代传统人工&#xff0c;成为变电设备状态监测的主要工具。变电站巡检机器人具有全天候、非接触式、多参量测量等特点&#xff0c;结合内置人工智能算法完成仪表识别…

““ 引用类型应用举例

#include <iostream> //使能cin(),cout(); #include <stdlib.h> //使能exit(); #include <iomanip> //使能setbase(),setfill(),setw(),setprecision(),setiosflags()和resetiosflags(); //setbase( char x )是设置输出数字的基数,如输出进制数则用se…

Git 本地操作(2)

会以下操作就可以完成本地的版本控制了&#xff0c;就不需要再复制文件每次改一个东西就复制整个工程保存下来啦&#xff01; 建议先看上一篇文章噢 &#xff01;&#xff01;&#xff01; 一、新建项目git本地操作 1、初始化仓库 创建一个 project 文件夹&#xff0c;将需…

室内障碍物射线追踪算法matlab模拟仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 增加发射点 加入室内墙壁&#xff1a; 同时增加发射点和室内墙壁&#xff1a; 2.算法运行软件版本 matlab2022a 3.部分…

视频文案素材获取渠道分享

做视频时为文案发愁&#xff1f;别担心&#xff01;今天为大家推荐几个实用的视频文案素材网站&#xff0c;让你灵感爆棚&#xff0c;轻松创作文案。 蛙学网 首先要推荐的是蛙学网。作为专业短视频素材库&#xff0c;不仅有修牛蹄、解压视频等热门素材&#xff0c;还为短视频创…

【LLaMA-Factory】【Windows】:在windows操作系统配置大模型微调框架LLaMA-Factory

目录 序言 1 代码下载 2 模型下载 一、模型的作用 二、为何需要下拉模型 3 conda 环境安装 一、环境隔离与管理 二、简化安装与配置 三、提升性能与兼容性 4 安装依赖包 5 安装cuda 121版本 6 安装pytorch 一、PyTorch与LLaMA-Factory的兼容性 二、PyTorch的GPU加…

深度学习基础(2024-10-30更新到tensor相关)

1. 名词解释 FFN FFN &#xff1a; Feedforward Neural Network&#xff0c;前馈神经网络馈神经网络是一种基本的神经网络架构&#xff0c;也称为多层感知器&#xff08;Multilayer Perceptron&#xff0c;MLP&#xff09;FFN 一般主要是包括多个全连接层(FC)的网络&#xff…

逆变器前级倍压方案【工作日志】

EG3525S: 价格便宜&#xff0c;能买到&#xff0c;资料丰富&#xff0c;成熟&#xff0c;有人用 C2987456_AC-DC控制器和稳压器_EG3525S_规格书_WJ93166.PDF 发现一个好玩的&#xff0c;这个芯片还可以做大功率的降压控制使用&#xff1a; EG3525S推挽半桥PWM控制芯片数…

企业数字化转型该如何衡量?转型的好不好,主要看哪些方面?

​大家发现一个现象没&#xff1f;就是明明可以简单几句话说清楚的事&#xff0c;有些人就喜欢长篇大论&#xff0c;写个几千上万字&#xff0c;甚至从概念、定义开始聊&#xff0c;讲了半天都还没讲到重点。就给人一种强行“凑字”的感觉... 其实这个问题很简单的&#xff0c;…

html生成图片方案总结

动态图片生成是我们日常开发中经常遇到的需求&#xff0c;比如宣传海报生成&#xff0c;电商商品图动态生成等&#xff0c;本文总结出三种常见的 HTML 生成图片的方案。 一、html2canvas html2canvas库能够将 HTML 元素渲染为 Canvas&#xff0c;然后将其转换为图片。它的优点…

瑞芯微RK3566/RK3568 Android11下该如何默认屏蔽导航栏/状态栏?看这篇文章就懂了

本文介绍瑞芯微RK3566/RK3568在Android11系统下&#xff0c;默认屏蔽导航栏/状态栏方法&#xff0c;使用触觉智能Purple Pi OH鸿蒙开发板演示&#xff0c;搭载了瑞芯微RK3566芯片&#xff0c;类树莓派设计&#xff0c;Laval官方社区主荐&#xff0c;已适配全新OpenHarmony5.0 R…

#渗透测试#SRC漏洞挖掘# 信息收集-Shodan之网页版

Shodan网页版概述 Shodan是一个专门用于搜索互联网上各种设备和服务的搜索引擎&#xff0c;它能够发现并列出暴露在互联网上的设备&#xff0c;如服务器、路由器、交换机、网络摄像头等。与传统的搜索引擎不同&#xff0c;Shodan并不为网页内容建立索引&#xff0c;而是寻找开放…

第二十一章 Vue组件通信之prop校验及单向数据流

目录 一、什么是Prop 1.1. Prop传递数据代码示例图 1.2. 演示代码App.vue 1.3. 演示代码UserInfo.vue 二、props 校验 2.1. props校验简单写法 2.1.1. 演示代码App.vue 2.1.2. 演示代码BaseProgress.vue 2.2. props校验完整写法 2.2.1. 演示代码BaseProgress.vue 2.…

哈工大《理论力学》第九版课后答案解析及笔记PDF

第九版序 哈工大《理论力学》初版于1961年&#xff0c;先后再版8次&#xff0c;曾获得首届国家优秀教材奖和国家级教学成果奖。本书第8版为“十二五”普通高等教育本科国家级规划教材&#xff0c;并于2021年被国家教材委员会评为首届全国教材建设奖全国优秀教材一等奖。 本书…