更多目标检测和图像分类识别项目可看我主页其他文章
功能演示:
棉花病害识别与防治系统,卷积神经网络,resnet50,mobilenet【pytorch框架,python源码】_哔哩哔哩_bilibili
(一)简介
基于卷积神经网络的棉花病虫害识别与防治系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标图表等。
该项目有两个可选模型:resnet50和mobilenet,两个模型都在项目中;GUI界面由pyqt5设计和实现,界面中给出模型预测病害的结果、概率和对应的防治措施。此项目的两个模型可做对比分析,增加工作量。
该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:
超详细的pycharm+anaconda搭建python虚拟环境_pycharm虚拟环境搭建-CSDN博客
(二)项目介绍
1. 项目结构
该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单
以训练resnet50模型为例:
第一步:修改model_resnet50.py的数据集路径,模型名称、模型训练的轮数
第二步:模型训练和验证,即直接运行model_resnet50.py文件
第三步:使用模型,即运行gui_chinese.py文件即可通过GUI界面来展示模型效果
2. 数据结构
部分数据展示:
3.GUI界面(技术栈:pyqt5+python+opencv)
1)gui初始界面
2)gui分类、识别界面
4.模型训练和验证的一些指标及效果
1)模型训练和验证的准确率曲线,损失曲线
2)热力图
3)准确率、精确率、召回率、F1值
4)模型训练和验证记录
(三)代码
由于篇幅有限,只展示核心代码
def main(self, epochs):
# 记录训练过程
log_file_name = './results/resnet50训练和验证过程.txt'
# 记录正常的 print 信息
sys.stdout = Logger(log_file_name)
print("using {} device.".format(self.device))
# 开始训练,记录开始时间
begin_time = time()
# 加载数据
train_loader, validate_loader, class_names, train_num, val_num = self.data_load()
print("class_names: ", class_names)
train_steps = len(train_loader)
val_steps = len(validate_loader)
# 加载模型
model = self.model_load() # 创建模型
# 修改全连接层的输出维度
in_channel = model.fc.in_features
model.fc = nn.Linear(in_channel, len(class_names))
# 模型结构可视化
x = torch.randn(16, 3, 224, 224) # 随机生成一个输入
# 模型结构保存路径
model_visual_path = 'results/resnet50_visual.onnx'
# 将 pytorch 模型以 onnx 格式导出并保存
torch.onnx.export(model, x, model_visual_path)
# netron.start(model_visual_path) # 浏览器会自动打开网络结构
# 将模型放入GPU中
model.to(self.device)
# 定义损失函数
loss_function = nn.CrossEntropyLoss()
# 定义优化器
params = [p for p in model.parameters() if p.requires_grad]
optimizer = optim.Adam(params=params, lr=0.0001)
train_loss_history, train_acc_history = [], []
test_loss_history, test_acc_history = [], []
best_acc = 0.0
for epoch in range(0, epochs):
# 下面是模型训练
model.train()
running_loss = 0.0
train_acc = 0.0
train_bar = tqdm(train_loader, file=sys.stdout)
# 进来一个batch的数据,计算一次梯度,更新一次网络
for step, data in enumerate(train_bar):
# 获取图像及对应的真实标签
images, labels = data
# 清空过往梯度
optimizer.zero_grad()
# 得到预测的标签
outputs = model(images.to(self.device))
# 计算损失
train_loss = loss_function(outputs, labels.to(self.device))
# 反向传播,计算当前梯度
train_loss.backward()
# 根据梯度更新网络参数
optimizer.step()
# 累加损失
running_loss += train_loss.item()
# 每行最大值的索引
predict_y = torch.max(outputs, dim=1)[1]
# torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
train_acc += torch.eq(predict_y, labels.to(self.device)).sum().item()
# 更新进度条
train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
epochs,
train_loss)
# 下面是模型验证
# 不启用 BatchNormalization 和 Dropout,保证BN和dropout不发生变化
model.eval()
# accumulate accurate number / epoch
val_acc = 0.0
testing_loss = 0.0
# 张量的计算过程中无需计算梯度
with torch.no_grad():
val_bar = tqdm(validate_loader, file=sys.stdout)
for val_data in val_bar:
# 获取图像及对应的真实标签
val_images, val_labels = val_data
# 得到预测的标签
outputs = model(val_images.to(self.device))
# 计算损失
val_loss = loss_function(outputs, val_labels.to(self.device))
testing_loss += val_loss.item()
# 每行最大值的索引
predict_y = torch.max(outputs, dim=1)[1]
# torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
val_acc += torch.eq(predict_y, val_labels.to(self.device)).sum().item()
train_loss = running_loss / train_steps
train_accurate = train_acc / train_num
test_loss = testing_loss / val_steps
val_accurate = val_acc / val_num
train_loss_history.append(train_loss)
train_acc_history.append(train_accurate)
test_loss_history.append(test_loss)
test_acc_history.append(val_accurate)
print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %
(epoch + 1, train_loss, val_accurate))
# 保存最佳模型
if val_accurate > best_acc:
best_acc = val_accurate
torch.save(model.state_dict(), self.model_name)
# 记录结束时间
end_time = time()
run_time = end_time - begin_time
print('该循环程序运行时间:', run_time, "s")
# 绘制模型训练过程图
self.show_loss_acc(train_loss_history, train_acc_history,
test_loss_history, test_acc_history)
# 画热力图
test_real_labels, test_pre_labels = self.heatmaps(model, validate_loader, class_names)
# 计算混淆矩阵
self.calculate_confusion_matrix(test_real_labels, test_pre_labels, class_names)
(四)总结
以上即为整个项目的介绍,整个项目主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面和各种模型指标图表等。
整套项目资料齐全,一步到位,省心省力。
项目运行过程如出现问题,请及时交流!