Java知识巩固(十二)

news2024/11/28 10:38:11

I/O

JavaIO流了解吗?

IO 即 Input/Output,输入和输出。数据输入到计算机内存的过程即输入,反之输出到外部存储(比如数据库,文件,远程主机)的过程即输出。数据传输过程类似于水流,因此称为 IO 流。IO 流在 Java 中分为输入流和输出流,而根据数据的处理方式又分为字节流和字符流。

Java IO 流的 40 多个类都是从如下 4 个抽象类基类中派生出来的。

  • InputStream/Reader: 所有的输入流的基类,前者是字节输入流,后者是字符输入流。
  • OutputStream/Writer: 所有输出流的基类,前者是字节输出流,后者是字符输出流。

I/O流为什么要分为字节流和字符流呢?

个人认为主要有两点原因:

  • 字符流是由 Java 虚拟机将字节转换得到的,这个过程还算是比较耗时;
  • 如果我们不知道编码类型的话,使用字节流的过程中很容易出现乱码问题。

JavaIO中的设计模式有哪些?

装饰器模式

装饰器(Decorator)模式 可以在不改变原有对象的情况下拓展其功能。

装饰器模式通过组合替代继承来扩展原始类的功能,在一些继承关系比较复杂的场景(IO 这一场景各种类的继承关系就比较复杂)更加实用。

对于字节流来说, FilterInputStream (对应输入流)和FilterOutputStream(对应输出流)是装饰器模式的核心,分别用于增强 InputStreamOutputStream子类对象的功能。

我们常见的BufferedInputStream(字节缓冲输入流)、DataInputStream 等等都是FilterInputStream 的子类,BufferedOutputStream(字节缓冲输出流)、DataOutputStream等等都是FilterOutputStream的子类。

举个例子,我们可以通过 BufferedInputStream(字节缓冲输入流)来增强 FileInputStream 的功能。

BufferedInputStream 构造函数如下:

public BufferedInputStream(InputStream in) {
    this(in, DEFAULT_BUFFER_SIZE);
}

public BufferedInputStream(InputStream in, int size) {
    super(in);
    if (size <= 0) {
        throw new IllegalArgumentException("Buffer size <= 0");
    }
    buf = new byte[size];
}

可以看出,BufferedInputStream 的构造函数其中的一个参数就是 InputStream 。

BufferedInputStream 代码示例:

try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream("input.txt"))) {
    int content;
    long skip = bis.skip(2);
    while ((content = bis.read()) != -1) {
        System.out.print((char) content);
    }
} catch (IOException e) {
    e.printStackTrace();
}

这个时候,你可以会想了:为啥我们直接不弄一个BufferedFileInputStream(字符缓冲文件输入流)呢?

BufferedFileInputStream bfis = new BufferedFileInputStream("input.txt");

如果 InputStream的子类比较少的话,这样做是没问题的。不过, InputStream的子类实在太多,继承关系也太复杂了。如果我们为每一个子类都定制一个对应的缓冲输入流,那岂不是太麻烦了。

如果你对 IO 流比较熟悉的话,你会发现ZipInputStreamZipOutputStream 还可以分别增强 BufferedInputStreamBufferedOutputStream 的能力。

BufferedInputStream bis = new BufferedInputStream(new FileInputStream(fileName));
ZipInputStream zis = new ZipInputStream(bis);

BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream(fileName));
ZipOutputStream zipOut = new ZipOutputStream(bos);

ZipInputStream 和ZipOutputStream 分别继承自InflaterInputStream 和DeflaterOutputStream

public
class InflaterInputStream extends FilterInputStream {
}

public
class DeflaterOutputStream extends FilterOutputStream {
}

这也是装饰器模式很重要的一个特征,那就是可以对原始类嵌套使用多个装饰器。

为了实现这一效果,装饰器类需要跟原始类继承相同的抽象类或者实现相同的接口。上面介绍到的这些 IO 相关的装饰类和原始类共同的父类是 InputStreamOutputStream

对于字符流来说,BufferedReader 可以用来增加 Reader (字符输入流)子类的功能,BufferedWriter 可以用来增加 Writer (字符输出流)子类的功能。

 

BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName), "UTF-8"));

IO 流中的装饰器模式应用的例子实在是太多了,不需要特意记忆,完全没必要哈!搞清了装饰器模式的核心之后,你在使用的时候自然就会知道哪些地方运用到了装饰器模式。

适配器模式

适配器(Adapter Pattern)模式 主要用于接口互不兼容的类的协调工作,你可以将其联想到我们日常经常使用的电源适配器。

适配器模式中存在被适配的对象或者类称为 适配者(Adaptee) ,作用于适配者的对象或者类称为适配器(Adapter) 。适配器分为对象适配器和类适配器。类适配器使用继承关系来实现,对象适配器使用组合关系来实现。

IO 流中的字符流和字节流的接口不同,它们之间可以协调工作就是基于适配器模式来做的,更准确点来说是对象适配器。通过适配器,我们可以将字节流对象适配成一个字符流对象,这样我们可以直接通过字节流对象来读取或者写入字符数据。

InputStreamReaderOutputStreamWriter 就是两个适配器(Adapter), 同时,它们两个也是字节流和字符流之间的桥梁。InputStreamReader 使用 StreamDecoder (流解码器)对字节进行解码,实现字节流到字符流的转换, OutputStreamWriter 使用StreamEncoder(流编码器)对字符进行编码,实现字符流到字节流的转换。

InputStreamOutputStream 的子类是被适配者, InputStreamReaderOutputStreamWriter是适配器。

// InputStreamReader 是适配器,FileInputStream 是被适配的类
InputStreamReader isr = new InputStreamReader(new FileInputStream(fileName), "UTF-8");
// BufferedReader 增强 InputStreamReader 的功能(装饰器模式)
BufferedReader bufferedReader = new BufferedReader(isr);

java.io.InputStreamReader 部分源码:

public class InputStreamReader extends Reader {
 //用于解码的对象
 private final StreamDecoder sd;
    public InputStreamReader(InputStream in) {
        super(in);
        try {
            // 获取 StreamDecoder 对象
            sd = StreamDecoder.forInputStreamReader(in, this, (String)null);
        } catch (UnsupportedEncodingException e) {
            throw new Error(e);
        }
    }
    // 使用 StreamDecoder 对象做具体的读取工作
 public int read() throws IOException {
        return sd.read();
    }
}

java.io.OutputStreamWriter 部分源码:

public class OutputStreamWriter extends Writer {
    // 用于编码的对象
    private final StreamEncoder se;
    public OutputStreamWriter(OutputStream out) {
        super(out);
        try {
           // 获取 StreamEncoder 对象
            se = StreamEncoder.forOutputStreamWriter(out, this, (String)null);
        } catch (UnsupportedEncodingException e) {
            throw new Error(e);
        }
    }
    // 使用 StreamEncoder 对象做具体的写入工作
    public void write(int c) throws IOException {
        se.write(c);
    }
}

适配器模式和装饰器模式有什么区别呢?

装饰器模式 更侧重于动态地增强原始类的功能,装饰器类需要跟原始类继承相同的抽象类或者实现相同的接口。并且,装饰器模式支持对原始类嵌套使用多个装饰器。

适配器模式 更侧重于让接口不兼容而不能交互的类可以一起工作,当我们调用适配器对应的方法时,适配器内部会调用适配者类或者和适配类相关的类的方法,这个过程透明的。就比如说 StreamDecoder (流解码器)和StreamEncoder(流编码器)就是分别基于 InputStreamOutputStream 来获取 FileChannel对象并调用对应的 read 方法和 write 方法进行字节数据的读取和写入。

StreamDecoder(InputStream in, Object lock, CharsetDecoder dec) {
    // 省略大部分代码
    // 根据 InputStream 对象获取 FileChannel 对象
    ch = getChannel((FileInputStream)in);
}

适配器和适配者两者不需要继承相同的抽象类或者实现相同的接口。

另外,FutureTask 类使用了适配器模式,Executors 的内部类 RunnableAdapter 实现属于适配器,用于将 Runnable 适配成 Callable

FutureTask参数包含 Runnable 的一个构造方法:

public FutureTask(Runnable runnable, V result) {
    // 调用 Executors 类的 callable 方法
    this.callable = Executors.callable(runnable, result);
    this.state = NEW;
}

Executors中对应的方法和适配器:

// 实际调用的是 Executors 的内部类 RunnableAdapter 的构造方法
public static <T> Callable<T> callable(Runnable task, T result) {
    if (task == null)
        throw new NullPointerException();
    return new RunnableAdapter<T>(task, result);
}
// 适配器
static final class RunnableAdapter<T> implements Callable<T> {
    final Runnable task;
    final T result;
    RunnableAdapter(Runnable task, T result) {
        this.task = task;
        this.result = result;
    }
    public T call() {
        task.run();
        return result;
    }
}

工厂模式

工厂模式用于创建对象,NIO 中大量用到了工厂模式,比如 Files 类的 newInputStream 方法用于创建 InputStream 对象(静态工厂)、 Paths 类的 get 方法创建 Path 对象(静态工厂)、ZipFileSystem 类(sun.nio包下的类,属于 java.nio 相关的一些内部实现)的 getPath 的方法创建 Path 对象(简单工厂)。

InputStream is = Files.newInputStream(Paths.get(generatorLogoPath))

观察者模式

NIO 中的文件目录监听服务使用到了观察者模式。

NIO 中的文件目录监听服务基于 WatchService 接口和 Watchable 接口。WatchService 属于观察者,Watchable 属于被观察者。

Watchable 接口定义了一个用于将对象注册到 WatchService(监控服务) 并绑定监听事件的方法 register

public interface Path
    extends Comparable<Path>, Iterable<Path>, Watchable{
}

public interface Watchable {
    WatchKey register(WatchService watcher,
                      WatchEvent.Kind<?>[] events,
                      WatchEvent.Modifier... modifiers)
        throws IOException;
}

WatchService 用于监听文件目录的变化,同一个 WatchService 对象能够监听多个文件目录。

// 创建 WatchService 对象
WatchService watchService = FileSystems.getDefault().newWatchService();

// 初始化一个被监控文件夹的 Path 类:
Path path = Paths.get("workingDirectory");
// 将这个 path 对象注册到 WatchService(监控服务) 中去
WatchKey watchKey = path.register(
watchService, StandardWatchEventKinds...);

Path 类 register 方法的第二个参数 events (需要监听的事件)为可变长参数,也就是说我们可以同时监听多种事件。

WatchKey register(WatchService watcher,
                  WatchEvent.Kind<?>... events)
    throws IOException;

常用的监听事件有 3 种:

  • StandardWatchEventKinds.ENTRY_CREATE:文件创建。
  • StandardWatchEventKinds.ENTRY_DELETE : 文件删除。
  • StandardWatchEventKinds.ENTRY_MODIFY : 文件修改。

register 方法返回 WatchKey 对象,通过WatchKey 对象可以获取事件的具体信息比如文件目录下是创建、删除还是修改了文件、创建、删除或者修改的文件的具体名称是什么。

WatchKey key;
while ((key = watchService.take()) != null) {
    for (WatchEvent<?> event : key.pollEvents()) {
      // 可以调用 WatchEvent 对象的方法做一些事情比如输出事件的具体上下文信息
    }
    key.reset();
}

WatchService 内部是通过一个 daemon thread(守护线程)采用定期轮询的方式来检测文件的变化,简化后的源码如下所示。

class PollingWatchService
    extends AbstractWatchService
{
    // 定义一个 daemon thread(守护线程)轮询检测文件变化
    private final ScheduledExecutorService scheduledExecutor;

    PollingWatchService() {
        scheduledExecutor = Executors
            .newSingleThreadScheduledExecutor(new ThreadFactory() {
                 @Override
                 public Thread newThread(Runnable r) {
                     Thread t = new Thread(r);
                     t.setDaemon(true);
                     return t;
                 }});
    }

  void enable(Set<? extends WatchEvent.Kind<?>> events, long period) {
    synchronized (this) {
      // 更新监听事件
      this.events = events;

        // 开启定期轮询
      Runnable thunk = new Runnable() { public void run() { poll(); }};
      this.poller = scheduledExecutor
        .scheduleAtFixedRate(thunk, period, period, TimeUnit.SECONDS);
    }
  }
}

BIO、NIO和AIO的区别?

何为I/O?

I/O(Input/Output) 即输入/输出 。

我们先从计算机结构的角度来解读一下 I/O。

根据冯.诺依曼结构,计算机结构分为 5 大部分:运算器、控制器、存储器、输入设备、输出设备。

输入设备(比如键盘)和输出设备(比如显示器)都属于外部设备。网卡、硬盘这种既可以属于输入设备,也可以属于输出设备。

输入设备向计算机输入数据,输出设备接收计算机输出的数据。

从计算机结构的视角来看的话, I/O 描述了计算机系统与外部设备之间通信的过程。

我们再先从应用程序的角度来解读一下 I/O。

根据大学里学到的操作系统相关的知识:为了保证操作系统的稳定性和安全性,一个进程的地址空间划分为 用户空间(User space)内核空间(Kernel space )

像我们平常运行的应用程序都是运行在用户空间,只有内核空间才能进行系统态级别的资源有关的操作,比如文件管理、进程通信、内存管理等等。也就是说,我们想要进行 IO 操作,一定是要依赖内核空间的能力。

并且,用户空间的程序不能直接访问内核空间。

当想要执行 IO 操作时,由于没有执行这些操作的权限,只能发起系统调用请求操作系统帮忙完成。

因此,用户进程想要执行 IO 操作的话,必须通过 系统调用 来间接访问内核空间

我们在平常开发过程中接触最多的就是 磁盘 IO(读写文件)网络 IO(网络请求和响应)

从应用程序的视角来看的话,我们的应用程序对操作系统的内核发起 IO 调用(系统调用),操作系统负责的内核执行具体的 IO 操作。也就是说,我们的应用程序实际上只是发起了 IO 操作的调用而已,具体 IO 的执行是由操作系统的内核来完成的。

当应用程序发起 I/O 调用后,会经历两个步骤:

  1. 内核等待 I/O 设备准备好数据
  2. 内核将数据从内核空间拷贝到用户空间。

有哪些常见的IO模型?

UNIX 系统下, IO 模型一共有 5 种:同步阻塞 I/O同步非阻塞 I/OI/O 多路复用信号驱动 I/O 和异步 I/O

这也是我们经常提到的 5 种 IO 模型。

Java中3重常见IO模型

BIO 属于同步阻塞 IO 模型 。

同步阻塞 IO 模型中,应用程序发起 read 调用后,会一直阻塞,直到内核把数据拷贝到用户空间。

在客户端连接数量不高的情况下,是没问题的。但是,当面对十万甚至百万级连接的时候,传统的 BIO 模型是无能为力的。因此,我们需要一种更高效的 I/O 处理模型来应对更高的并发量。

NIO (Non-blocking/New I/O)

Java 中的 NIO 于 Java 1.4 中引入,对应 java.nio 包,提供了 Channel , SelectorBuffer 等抽象。NIO 中的 N 可以理解为 Non-blocking,不单纯是 New。它是支持面向缓冲的,基于通道的 I/O 操作方法。 对于高负载、高并发的(网络)应用,应使用 NIO 。

Java 中的 NIO 可以看作是 I/O 多路复用模型。也有很多人认为,Java 中的 NIO 属于同步非阻塞 IO 模型。

跟着我的思路往下看看,相信你会得到答案!

我们先来看看 同步非阻塞 IO 模型

同步非阻塞 IO 模型中,应用程序会一直发起 read 调用,等待数据从内核空间拷贝到用户空间的这段时间里,线程依然是阻塞的,直到在内核把数据拷贝到用户空间。

相比于同步阻塞 IO 模型,同步非阻塞 IO 模型确实有了很大改进。通过轮询操作,避免了一直阻塞。

但是,这种 IO 模型同样存在问题:应用程序不断进行 I/O 系统调用轮询数据是否已经准备好的过程是十分消耗 CPU 资源的。

这个时候,I/O 多路复用模型 就上场了。

IO 多路复用模型中,线程首先发起 select 调用,询问内核数据是否准备就绪,等内核把数据准备好了,用户线程再发起 read 调用。read 调用的过程(数据从内核空间 -> 用户空间)还是阻塞的。

目前支持 IO 多路复用的系统调用,有 select,epoll 等等。select 系统调用,目前几乎在所有的操作系统上都有支持。

  • select 调用:内核提供的系统调用,它支持一次查询多个系统调用的可用状态。几乎所有的操作系统都支持。
  • epoll 调用:linux 2.6 内核,属于 select 调用的增强版本,优化了 IO 的执行效率。

IO 多路复用模型,通过减少无效的系统调用,减少了对 CPU 资源的消耗。

Java 中的 NIO ,有一个非常重要的选择器 ( Selector ) 的概念,也可以被称为 多路复用器。通过它,只需要一个线程便可以管理多个客户端连接。当客户端数据到了之后,才会为其服务。

        

AIO(AsynchronousI/O)

AIO 也就是 NIO 2。Java 7 中引入了 NIO 的改进版 NIO 2,它是异步 IO 模型。

异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。

目前来说 AIO 的应用还不是很广泛。Netty 之前也尝试使用过 AIO,不过又放弃了。这是因为,Netty 使用了 AIO 之后,在 Linux 系统上的性能并没有多少提升。

最后,来一张图,简单总结一下 Java 中的 BIO、NIO、AIO。

I/O

何为 I/O?

I/O(Input/Output) 即输入/输出 。

我们先从计算机结构的角度来解读一下 I/O。

根据冯.诺依曼结构,计算机结构分为 5 大部分:运算器、控制器、存储器、输入设备、输出设备。

冯诺依曼体系结构

冯诺依曼体系结构

输入设备(比如键盘)和输出设备(比如显示器)都属于外部设备。网卡、硬盘这种既可以属于输入设备,也可以属于输出设备。

输入设备向计算机输入数据,输出设备接收计算机输出的数据。

从计算机结构的视角来看的话, I/O 描述了计算机系统与外部设备之间通信的过程。

我们再先从应用程序的角度来解读一下 I/O。

根据大学里学到的操作系统相关的知识:为了保证操作系统的稳定性和安全性,一个进程的地址空间划分为 用户空间(User space) 和 内核空间(Kernel space ) 。

像我们平常运行的应用程序都是运行在用户空间,只有内核空间才能进行系统态级别的资源有关的操作,比如文件管理、进程通信、内存管理等等。也就是说,我们想要进行 IO 操作,一定是要依赖内核空间的能力。

并且,用户空间的程序不能直接访问内核空间。

当想要执行 IO 操作时,由于没有执行这些操作的权限,只能发起系统调用请求操作系统帮忙完成。

因此,用户进程想要执行 IO 操作的话,必须通过 系统调用 来间接访问内核空间

我们在平常开发过程中接触最多的就是 磁盘 IO(读写文件) 和 网络 IO(网络请求和响应)

从应用程序的视角来看的话,我们的应用程序对操作系统的内核发起 IO 调用(系统调用),操作系统负责的内核执行具体的 IO 操作。也就是说,我们的应用程序实际上只是发起了 IO 操作的调用而已,具体 IO 的执行是由操作系统的内核来完成的。

当应用程序发起 I/O 调用后,会经历两个步骤:

  1. 内核等待 I/O 设备准备好数据
  2. 内核将数据从内核空间拷贝到用户空间。

有哪些常见的 IO 模型?

UNIX 系统下, IO 模型一共有 5 种:同步阻塞 I/O同步非阻塞 I/OI/O 多路复用信号驱动 I/O 和异步 I/O

这也是我们经常提到的 5 种 IO 模型。

Java 中 3 种常见 IO 模型

BIO (Blocking I/O)

BIO 属于同步阻塞 IO 模型 。

同步阻塞 IO 模型中,应用程序发起 read 调用后,会一直阻塞,直到内核把数据拷贝到用户空间。

图源:《深入拆解Tomcat & Jetty》

图源:《深入拆解Tomcat & Jetty》

在客户端连接数量不高的情况下,是没问题的。但是,当面对十万甚至百万级连接的时候,传统的 BIO 模型是无能为力的。因此,我们需要一种更高效的 I/O 处理模型来应对更高的并发量。

NIO (Non-blocking/New I/O)

Java 中的 NIO 于 Java 1.4 中引入,对应 java.nio 包,提供了 Channel , SelectorBuffer 等抽象。NIO 中的 N 可以理解为 Non-blocking,不单纯是 New。它是支持面向缓冲的,基于通道的 I/O 操作方法。 对于高负载、高并发的(网络)应用,应使用 NIO 。

Java 中的 NIO 可以看作是 I/O 多路复用模型。也有很多人认为,Java 中的 NIO 属于同步非阻塞 IO 模型。

跟着我的思路往下看看,相信你会得到答案!

我们先来看看 同步非阻塞 IO 模型

图源:《深入拆解Tomcat & Jetty》

图源:《深入拆解Tomcat & Jetty》

同步非阻塞 IO 模型中,应用程序会一直发起 read 调用,等待数据从内核空间拷贝到用户空间的这段时间里,线程依然是阻塞的,直到在内核把数据拷贝到用户空间。

相比于同步阻塞 IO 模型,同步非阻塞 IO 模型确实有了很大改进。通过轮询操作,避免了一直阻塞。

但是,这种 IO 模型同样存在问题:应用程序不断进行 I/O 系统调用轮询数据是否已经准备好的过程是十分消耗 CPU 资源的。

这个时候,I/O 多路复用模型 就上场了。

 

IO 多路复用模型中,线程首先发起 select 调用,询问内核数据是否准备就绪,等内核把数据准备好了,用户线程再发起 read 调用。read 调用的过程(数据从内核空间 -> 用户空间)还是阻塞的。

目前支持 IO 多路复用的系统调用,有 select,epoll 等等。select 系统调用,目前几乎在所有的操作系统上都有支持。

  • select 调用:内核提供的系统调用,它支持一次查询多个系统调用的可用状态。几乎所有的操作系统都支持。
  • epoll 调用:linux 2.6 内核,属于 select 调用的增强版本,优化了 IO 的执行效率。

IO 多路复用模型,通过减少无效的系统调用,减少了对 CPU 资源的消耗。

Java 中的 NIO ,有一个非常重要的选择器 ( Selector ) 的概念,也可以被称为 多路复用器。通过它,只需要一个线程便可以管理多个客户端连接。当客户端数据到了之后,才会为其服务。

Buffer、Channel和Selector三者之间的关系

Buffer、Channel和Selector三者之间的关系

AIO (Asynchronous I/O)

AIO 也就是 NIO 2。Java 7 中引入了 NIO 的改进版 NIO 2,它是异步 IO 模型。

异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。

 

目前来说 AIO 的应用还不是很广泛。Netty 之前也尝试使用过 AIO,不过又放弃了。这是因为,Netty 使用了 AIO 之后,在 Linux 系统上的性能并没有多少提升。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2227595.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1.3 面向对象 C++面试问题

1.3.1 简述一下什么是面向对象,面向对象与面向过程的区别 什么是面向对象 面向对象&#xff08;Object-Oriented Programming&#xff0c;OOP&#xff09;是一种编程范式&#xff0c;它通过将现实世界中的实体抽象为“对象”来组织代码。面向对象编程关注对象及其交互&#x…

Visual Studio Code

代码自动保存 打开设置搜索auto save&#xff0c;设置为afterDelay 设置延迟时间&#xff0c;单位是毫秒 启用Ctrl鼠标滚轮对字体进行缩放 搜索Mouse Wheel Zoom&#xff0c;把该选项勾选上即可 Python插件 运行和调试Python

Hash表算法

哈希表 理论知识&#xff08;本文来自于代码随想录摘抄&#xff09;什么是哈希常见的三种哈希结数组&#xff1a;set:map:其他常用方法或者技巧&#xff08;自己总结的&#xff09; 练习题和讲解有效的字母移位词349. 两个数组的交集1. 两数之和454. 四数相加 II15. 三数之和 总…

广泛的四款录屏工具专业软件解析!!!

当代社会的进步&#xff0c;电脑、手机等数码产品的普及&#xff0c;改变了我们的沟通形式&#xff0c;只需要动动手指&#xff0c;就能实现视频连接&#xff0c;影像播放等。有时候就需要我们录屏留存。在市面上的录屏软件种类繁多&#xff0c;从简洁易用的小工具到功能丰富的…

通俗直观介绍ChatGPT背后的大语言模型理论知识

“AI 的 iPhone 时刻到来了”。非算法岗位的研发同学’被迫’学习 AI&#xff0c;产品岗位的同学希望了解 AI。但是&#xff0c;很多自媒体文章要么太严谨、科学&#xff0c;让非科班出身的同学读不懂&#xff1b;要么&#xff0c;写成了科幻文章&#xff0c;很多结论都没有充分…

力扣21 : 合并两个有序链表

链表style 描述&#xff1a; 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例&#xff1a; 节点大小相同时&#xff0c;l1的节点在前 何解&#xff1f; 1&#xff0c;遍历两个链表&#xff0c;挨个比较节点大小 同时遍…

MATLAB——入门知识

内容源于b站清风数学建模 目录 1.帮助文档 2.注释 3.特殊字符 4.设置MATLAB数值显示格式 4.1.临时更改 4.2.永久改 5.常用函数 6.易错点 1.帮助文档 doc sum help sum edit sum 2.注释 ctrl R/T 3.特殊字符 4.设置MATLAB数值显示格式 4.1.临时更改 format lon…

LCR 024. 反转链表 最细图片逐行解析过程

LCR 024. 反转链表 给定单链表的头节点 head &#xff0c;请反转链表&#xff0c;并返回反转后的链表的头节点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1]示例 2&#xff1a; 输入&#xff1a;head [1,2] 输出&#xff1a;[2,1]示例…

【JavaEE】【多线程】定时器

目录 一、定时器简介1.1 Timer类1.2 使用案例 二、实现简易定时器2.1 MyTimerTask类2.2 实现schedule方法2.3 构造方法2.4 总代码2.5 测试 一、定时器简介 定时器&#xff1a;就相当于一个闹钟&#xff0c;当我们定的时间到了&#xff0c;那么就执行一些逻辑。 1.1 Timer类 …

TVM前端研究--Relay

文章目录 深度学习IR梳理1. IR属性2. DL前端发展3. DL编译器4. DL编程语言Relay的主要内容一、Expression in Relay1. Dataflow and Control Fragments2. 变量3. 函数3.1 闭包3.2 多态和类型关系3.3. Call4. 算子5. ADT Constructors6. Moudle和Global Function7. 常量和元组8.…

SSL/TLS 密码套件漏洞分析以及修复方法

1. 前言 在当今数字化时代&#xff0c;网络安全至关重要。SSL/TLS 协议作为保障网络通信安全的重要手段&#xff0c;广泛应用于各类网络应用中。然而&#xff0c;如同任何技术一样&#xff0c;SSL/TLS 也并非绝对安全&#xff0c;存在着一些可能被攻击者利用的漏洞。本文将深入…

stm32入门教程--DMA 超详细!!!

目录 简介 工作模式 1、数据转运DMA 2、ADC扫描模式DMA 简介 工作模式 1、数据转运DMA 这个例子的任务是将SRAM的数组DataA&#xff0c;转运到另一个数组DataB中&#xff0c;这个基本结构里的各个参数应该如何配置呢&#xff1f; 首先是外设站点和存储器站点的起始地址、…

大数据新视界 -- 大数据大厂之大数据重塑影视娱乐产业的未来(4 - 3)

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

TIFS-2024 细粒度表示和重组在换衣行人重识别中的应用

总体结论 本文提出了一种新的细粒度表示与重构&#xff08;FIRe2&#xff09;框架&#xff0c;用于解决布变人重识别问题。通过细粒度特征挖掘和属性重构&#xff0c;FIRe2在不依赖任何辅助信息的情况下&#xff0c;实现了最先进的性能。该方法在多个基准数据集上取得了显著的…

基于JSP的篮球系列网上商城系统【附源码】

基于JSP的篮球系列网上商城系统 效果如下&#xff1a; 系统首页界面 商品信息界面 购物车界面 购物车界面 管理员登录界面 管理员功能界面 用户注册界面 我的收藏界面 研究背景 21世纪&#xff0c;我国早在上世纪就已普及互联网信息&#xff0c;互联网对人们生活中带来了无限…

重学SpringBoot3-怎样优雅停机

更多SpringBoot3内容请关注我的专栏&#xff1a;《SpringBoot3》 期待您的点赞&#x1f44d;收藏⭐评论✍ 重学SpringBoot3-怎样优雅停机 1. 什么是优雅停机&#xff1f;2. Spring Boot 3 优雅停机的配置3. Tomcat 和 Reactor Netty 的优雅停机机制3.1 Tomcat 优雅停机3.2 Reac…

MySQL 数据库备份与恢复全攻略

MySQL 数据库备份与恢复全攻略 引言 在现代应用中&#xff0c;数据库是核心组件之一。无论是个人项目还是企业级应用&#xff0c;数据的安全性和完整性都至关重要。为了防止数据丢失、损坏或意外删除&#xff0c;定期备份数据库是必不可少的。本文将详细介绍 MySQL 数据库的备…

Cesium基础-(Entity)-(Billboard)

里边包含Vue、React框架代码 2、Billboard 广告牌 Cesium中的Billboard是一种用于在3D场景中添加图像标签的简单方式。Billboard提供了一种方法来显示定向的2D图像,这些图像通常用于表示简单的标记、符号或图标。以下是对Billboard的详细解读: 1. Billboard的定义和特性 B…

DEVOPS: 容器与虚拟化与云原生

概述 传统虚拟机&#xff0c;利用 hypervisor&#xff0c;模拟出独立的硬件和系统&#xff0c;在此之上创建应用虚拟机是一个主机模拟出多个主机虚拟机需要先拥有独立的系统docker 是把应用及配套环境独立打包成一个单位docker 是在主机系统中建立多个应用及配套环境docker 是…

ansible开局配置-openEuler

ansible干啥用的就不多介绍了&#xff0c;这篇文章主要在说ansible的安装、开局配置、免密登录。 ansible安装 查看系统版本 cat /etc/openEuler-latest输出内容如下&#xff1a; openeulerversionopenEuler-24.03-LTS compiletime2024-05-27-21-31-28 gccversion12.3.1-30.…