yolov11的onnx模型C++ 调用

news2025/1/18 20:12:31

yolov11的onnx模型C++调用

  • 效果图
  • 一、python调用
  • 二、onnx模型导出
  • 三、python的onnx调用
    • 调用检测模型
    • 调用分割模型
  • 四、C++的onnx模型调用
  • 五 、视频流的检测
  • 后续

效果图

在这里插入图片描述

一、python调用

本文只记录生成的yolov11模型如何调用,其他可参考各种yolov11博客
模型下载:
yolo11模型及源码下载

模型调用:
下载好的python项目新建python文件

from ultralytics import YOLO

# 加载模型
#model = YOLO("yolo11n.pt")
model = YOLO("yolo11n-seg.pt")
results = model("cat.jpg")
results[0].show()

不同模型效果不一样,有检测、有实例分割
在这里插入图片描述

在这里插入图片描述

二、onnx模型导出

导出onnx模型即在刚刚的代码下添加一行即可,具体参数参照各种博客,此时,文件所在的文件夹会生成一个onnx的模型,这个模型即可在python或者c++中调用

from ultralytics import YOLO

# 加载模型
model = YOLO("yolo11n.pt")
# results = model("cat.jpg")
# results[0].show()


path = model.export(format="onnx",dynamic=False ,opset=12)  

在这里插入图片描述

三、python的onnx调用

调用检测模型

# Ultralytics YOLO 🚀, AGPL-3.0 license

import argparse
import cv2
import numpy as np
import onnxruntime as ort

# 类外定义类别映射关系,使用字典格式
CLASS_NAMES = {
    0: 'person',
    1: 'bicycle',
    2: 'car',
    3: 'motorcycle',
    4: 'airplane',
    5: 'bus',
    6: 'train',
    7: 'truck',
    8: 'boat',
    9: 'traffic light',
    10: 'fire hydrant',
    11: 'stop sign',
    12: 'parking meter',
    13: 'bench',
    14: 'bird',
    15: 'cat',
    16: 'dog',
    17: 'horse',
    18: 'sheep',
    19: 'cow',
    20: 'elephant',
    21: 'bear',
    22: 'zebra',
    23: 'giraffe',
    24: 'backpack',
    25: 'umbrella',
    26: 'handbag',
    27: 'tie',
    28: 'suitcase',
    29: 'frisbee',
    30: 'skis',
    31: 'snowboard',
    32: 'sports ball',
    33: 'kite',
    34: 'baseball bat',
    35: 'baseball glove',
    36: 'skateboard',
    37: 'surfboard',
    38: 'tennis racket',
    39: 'bottle',
    40: 'wine glass',
    41: 'cup',
    42: 'fork',
    43: 'knife',
    44: 'spoon',
    45: 'bowl',
    46: 'banana',
    47: 'apple',
    48: 'sandwich',
    49: 'orange',
    50: 'broccoli',
    51: 'carrot',
    52: 'hot dog',
    53: 'pizza',
    54: 'donut',
    55: 'cake',
    56: 'chair',
    57: 'couch',
    58: 'potted plant',
    59: 'bed',
    60: 'dining table',
    61: 'toilet',
    62: 'tv',
    63: 'laptop',
    64: 'mouse',
    65: 'remote',
    66: 'keyboard',
    67: 'cell phone',
    68: 'microwave',
    69: 'oven',
    70: 'toaster',
    71: 'sink',
    72: 'refrigerator',
    73: 'book',
    74: 'clock',
    75: 'vase',
    76: 'scissors',
    77: 'teddy bear',
    78: 'hair drier',
    79: 'toothbrush',

    # 可以添加更多类别...
}


class YOLO11:
    """YOLO11 目标检测模型类,用于处理推理和可视化。"""

    def __init__(self, onnx_model, input_image, confidence_thres, iou_thres):
        """
        初始化 YOLO11 类的实例。
        参数:
            onnx_model: ONNX 模型的路径。
            input_image: 输入图像的路径。
            confidence_thres: 用于过滤检测结果的置信度阈值。
            iou_thres: 非极大值抑制(NMS)的 IoU(交并比)阈值。
        """
        self.onnx_model = onnx_model
        self.input_image = input_image
        self.confidence_thres = confidence_thres
        self.iou_thres = iou_thres

        # 加载类别名称
        self.classes = CLASS_NAMES

        # 为每个类别生成一个颜色调色板
        self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))

    def preprocess(self):
        """
        对输入图像进行预处理,以便进行推理。
        返回:
            image_data: 经过预处理的图像数据,准备进行推理。
        """
        # 使用 OpenCV 读取输入图像
        self.img = cv2.imread(self.input_image)
        # 获取输入图像的高度和宽度
        self.img_height, self.img_width = self.img.shape[:2]

        # 将图像颜色空间从 BGR 转换为 RGB
        img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)

        # 保持宽高比,进行 letterbox 填充, 使用模型要求的输入尺寸
        img, self.ratio, (self.dw, self.dh) = self.letterbox(img, new_shape=(self.input_width, self.input_height))

        # 通过除以 255.0 来归一化图像数据
        image_data = np.array(img) / 255.0

        # 将图像的通道维度移到第一维
        image_data = np.transpose(image_data, (2, 0, 1))  # 通道优先

        # 扩展图像数据的维度,以匹配模型输入的形状
        image_data = np.expand_dims(image_data, axis=0).astype(np.float32)

        # 返回预处理后的图像数据
        return image_data

    def letterbox(self, img, new_shape=(640, 640), color=(114, 114, 114), auto=False, scaleFill=False, scaleup=True):
        """
        将图像进行 letterbox 填充,保持纵横比不变,并缩放到指定尺寸。
        """
        shape = img.shape[:2]  # 当前图像的宽高
        print(f"Original image shape: {shape}")

        if isinstance(new_shape, int):
            new_shape = (new_shape, new_shape)

        # 计算缩放比例
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])  # 选择宽高中最小的缩放比
        if not scaleup:  # 仅缩小,不放大
            r = min(r, 1.0)

        # 缩放后的未填充尺寸
        new_unpad = (int(round(shape[1] * r)), int(round(shape[0] * r)))

        # 计算需要的填充
        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # 计算填充的尺寸
        dw /= 2  # padding 均分
        dh /= 2

        # 缩放图像
        if shape[::-1] != new_unpad:  # 如果当前图像尺寸不等于 new_unpad,则缩放
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)

        # 为图像添加边框以达到目标尺寸
        top, bottom = int(round(dh)), int(round(dh))
        left, right = int(round(dw)), int(round(dw))
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
        print(f"Final letterboxed image shape: {img.shape}")

        return img, (r, r), (dw, dh)

    def postprocess(self, input_image, output):
        """
        对模型输出进行后处理,以提取边界框、分数和类别 ID。
        参数:
            input_image (numpy.ndarray): 输入图像。
            output (numpy.ndarray): 模型的输出。
        返回:
            numpy.ndarray: 包含检测结果的输入图像。
        """
        # 转置并压缩输出,以匹配预期形状
        outputs = np.transpose(np.squeeze(output[0]))
        rows = outputs.shape[0]
        boxes, scores, class_ids = [], [], []

        # 计算缩放比例和填充
        ratio = self.img_width / self.input_width, self.img_height / self.input_height

        for i in range(rows):
            classes_scores = outputs[i][4:]
            max_score = np.amax(classes_scores)
            if max_score >= self.confidence_thres:
                class_id = np.argmax(classes_scores)
                x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]

                # 将框调整到原始图像尺寸,考虑缩放和填充
                x -= self.dw  # 移除填充
                y -= self.dh
                x /= self.ratio[0]  # 缩放回原图
                y /= self.ratio[1]
                w /= self.ratio[0]
                h /= self.ratio[1]
                left = int(x - w / 2)
                top = int(y - h / 2)
                width = int(w)
                height = int(h)

                boxes.append([left, top, width, height])
                scores.append(max_score)
                class_ids.append(class_id)

        indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
        for i in indices:
            box = boxes[i]
            score = scores[i]
            class_id = class_ids[i]
            self.draw_detections(input_image, box, score, class_id)
        return input_image

    def draw_detections(self, img, box, score, class_id):
        """
        在输入图像上绘制检测到的边界框和标签。
        参数:
            img: 用于绘制检测结果的输入图像。
            box: 检测到的边界框。
            score: 对应的检测分数。
            class_id: 检测到的目标类别 ID。

        返回:
            None
        """
        # 提取边界框的坐标
        x1, y1, w, h = box

        # 获取类别对应的颜色
        color = self.color_palette[class_id]

        # 在图像上绘制边界框
        cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)

        # 创建包含类别名和分数的标签文本
        label = f"{self.classes[class_id]}: {score:.2f}"

        # 计算标签文本的尺寸
        (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)

        # 计算标签文本的位置
        label_x = x1
        label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10

        # 绘制填充的矩形作为标签文本的背景
        cv2.rectangle(img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color,
                      cv2.FILLED)

        # 在图像上绘制标签文本
        cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)

    def main(self):
        # 使用 ONNX 模型创建推理会话,自动选择CPU或GPU
        session = ort.InferenceSession(
            self.onnx_model,
            providers=["CUDAExecutionProvider", "CPUExecutionProvider"] if ort.get_device() == "GPU" else [
                "CPUExecutionProvider"],
        )
        # 打印模型的输入尺寸
        print("YOLO11 🚀 目标检测 ONNXRuntime")
        print("模型名称:", self.onnx_model)

        # 获取模型的输入形状
        model_inputs = session.get_inputs()
        input_shape = model_inputs[0].shape
        self.input_width = input_shape[2]
        self.input_height = input_shape[3]
        print(f"模型输入尺寸:宽度 = {self.input_width}, 高度 = {self.input_height}")

        # 预处理图像数据,确保使用模型要求的尺寸 (640x640)
        img_data = self.preprocess()

        print("尺寸处理完毕")
        # 使用预处理后的图像数据运行推理
        outputs = session.run(None, {model_inputs[0].name: img_data})

        # 对输出进行后处理以获取输出图像
        return self.postprocess(self.img, outputs)  # 输出图像


if __name__ == "__main__":
    # 创建参数解析器以处理命令行参数
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, default="yolo11n-seg.onnx", help="输入你的 ONNX 模型路径。")
    parser.add_argument("--img", type=str, default=r"2222.jpg", help="输入图像的路径。")
    parser.add_argument("--conf-thres", type=float, default=0.5, help="置信度阈值")
    parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU 阈值")
    args = parser.parse_args()

    # 使用指定的参数创建 YOLO11 类的实例
    detection = YOLO11(args.model, args.img, args.conf_thres, args.iou_thres)

    # 执行目标检测并获取输出图像
    output_image = detection.main()

    # 保存输出图像到文件
    cv2.imwrite("det_result_picture.jpg", output_image)

    print("图像已保存为 det_result_picture.jpg")

在这里插入图片描述

调用分割模型

# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
YOLO11 分割模型 ONNXRuntime
    功能1: 支持不用尺寸图像的输入
    功能2: 支持可视化分割结果
"""

import argparse
import cv2
import numpy as np
import onnxruntime as ort

# 类外定义类别映射关系,使用字典格式
CLASS_NAMES = {
    0: 'person',
    1: 'bicycle',
    2: 'car',
    3: 'motorcycle',
    4: 'airplane',
    5: 'bus',
    6: 'train',
    7: 'truck',
    8: 'boat',
    9: 'traffic light',
    10: 'fire hydrant',
    11: 'stop sign',
    12: 'parking meter',
    13: 'bench',
    14: 'bird',
    15: 'cat',
    16: 'dog',
    17: 'horse',
    18: 'sheep',
    19: 'cow',
    20: 'elephant',
    21: 'bear',
    22: 'zebra',
    23: 'giraffe',
    24: 'backpack',
    25: 'umbrella',
    26: 'handbag',
    27: 'tie',
    28: 'suitcase',
    29: 'frisbee',
    30: 'skis',
    31: 'snowboard',
    32: 'sports ball',
    33: 'kite',
    34: 'baseball bat',
    35: 'baseball glove',
    36: 'skateboard',
    37: 'surfboard',
    38: 'tennis racket',
    39: 'bottle',
    40: 'wine glass',
    41: 'cup',
    42: 'fork',
    43: 'knife',
    44: 'spoon',
    45: 'bowl',
    46: 'banana',
    47: 'apple',
    48: 'sandwich',
    49: 'orange',
    50: 'broccoli',
    51: 'carrot',
    52: 'hot dog',
    53: 'pizza',
    54: 'donut',
    55: 'cake',
    56: 'chair',
    57: 'couch',
    58: 'potted plant',
    59: 'bed',
    60: 'dining table',
    61: 'toilet',
    62: 'tv',
    63: 'laptop',
    64: 'mouse',
    65: 'remote',
    66: 'keyboard',
    67: 'cell phone',
    68: 'microwave',
    69: 'oven',
    70: 'toaster',
    71: 'sink',
    72: 'refrigerator',
    73: 'book',
    74: 'clock',
    75: 'vase',
    76: 'scissors',
    77: 'teddy bear',
    78: 'hair drier',
    79: 'toothbrush',

    # 可以添加更多类别...
}


# 定义类别对应的颜色,格式为 (R, G, B)
CLASS_COLORS = {
    0: (255, 0, 0),  # 类别 0 的颜色为青黄色
    1: (255, 0, 255)  # 类别 1 的颜色为红色
    # 可以为其他类别指定颜色...
}


class YOLO11Seg:
    def __init__(self, onnx_model):
        # 创建 Ort 推理会话,选择 CPU 或 GPU 提供者
        self.session = ort.InferenceSession(
            onnx_model,
            providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
            if ort.get_device() == "GPU"
            else ["CPUExecutionProvider"],
        )
        # 根据 ONNX 模型类型选择 Numpy 数据类型(支持 FP32 和 FP16)
        self.ndtype = np.half if self.session.get_inputs()[0].type == "tensor(float16)" else np.single

        # 获取模型的输入宽度和高度(YOLO11-seg 只有一个输入)
        self.model_height, self.model_width = [x.shape for x in self.session.get_inputs()][0][-2:]

        # 打印模型的输入尺寸
        print("YOLO11 🚀 实例分割 ONNXRuntime")
        print("模型名称:", onnx_model)
        print(f"模型输入尺寸:宽度 = {self.model_width}, 高度 = {self.model_height}")

        # 加载类别名称
        self.classes = CLASS_NAMES

        # 加载类别对应的颜色
        self.class_colors = CLASS_COLORS

    def get_color_for_class(self, class_id):
        return self.class_colors.get(class_id, (255, 255, 0))  # 如果没有找到类别颜色,返回白色

    def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45, nm=32):
        """
        完整的推理流程:预处理 -> 推理 -> 后处理
        Args:
            im0 (Numpy.ndarray): 原始输入图像
            conf_threshold (float): 置信度阈值
            iou_threshold (float): NMS 中的 IoU 阈值
            nm (int): 掩膜数量
        Returns:
            boxes (List): 边界框列表
            segments (List): 分割区域列表
            masks (np.ndarray): [N, H, W] 输出掩膜
        """
        # 图像预处理
        im, ratio, (pad_w, pad_h) = self.preprocess(im0)

        # ONNX 推理
        preds = self.session.run(None, {self.session.get_inputs()[0].name: im})

        # 后处理
        boxes, segments, masks = self.postprocess(
            preds,
            im0=im0,
            ratio=ratio,
            pad_w=pad_w,
            pad_h=pad_h,
            conf_threshold=conf_threshold,
            iou_threshold=iou_threshold,
            nm=nm,
        )
        return boxes, segments, masks

    def preprocess(self, img):
        """
        图像预处理
        Args:
            img (Numpy.ndarray): 输入图像
        Returns:
            img_process (Numpy.ndarray): 处理后的图像
            ratio (tuple): 宽高比例
            pad_w (float): 宽度的填充
            pad_h (float): 高度的填充
        """
        # 调整输入图像大小并使用 letterbox 填充
        shape = img.shape[:2]  # 原始图像大小
        new_shape = (self.model_height, self.model_width)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        ratio = r, r
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # 填充宽高
        if shape[::-1] != new_unpad:  # 调整图像大小
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))
        left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))

        # 转换:HWC -> CHW -> BGR 转 RGB -> 除以 255 -> contiguous -> 添加维度
        img = np.ascontiguousarray(np.einsum("HWC->CHW", img)[::-1], dtype=self.ndtype) / 255.0
        img_process = img[None] if len(img.shape) == 3 else img
        return img_process, ratio, (pad_w, pad_h)

    def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold, nm=32):
        """
        推理后的结果后处理
        Args:
            preds (Numpy.ndarray): 来自 ONNX 的推理结果
            im0 (Numpy.ndarray): [h, w, c] 原始输入图像
            ratio (tuple): 宽高比例
            pad_w (float): 宽度的填充
            pad_h (float): 高度的填充
            conf_threshold (float): 置信度阈值
            iou_threshold (float): IoU 阈值
            nm (int): 掩膜数量
        Returns:
            boxes (List): 边界框列表
            segments (List): 分割区域列表
            masks (np.ndarray): 掩膜数组
        """
        x, protos = preds[0], preds[1]  # 获取模型的两个输出:预测和原型

        # 转换维度
        x = np.einsum("bcn->bnc", x)

        # 置信度过滤
        x = x[np.amax(x[..., 4:-nm], axis=-1) > conf_threshold]

        # 合并边界框、置信度、类别和掩膜
        x = np.c_[x[..., :4], np.amax(x[..., 4:-nm], axis=-1), np.argmax(x[..., 4:-nm], axis=-1), x[..., -nm:]]

        # NMS 过滤
        x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]

        # 解析并返回结果
        if len(x) > 0:
            # 边界框格式转换:从 cxcywh -> xyxy
            x[..., [0, 1]] -= x[..., [2, 3]] / 2
            x[..., [2, 3]] += x[..., [0, 1]]

            # 缩放边界框,使其与原始图像尺寸匹配
            x[..., :4] -= [pad_w, pad_h, pad_w, pad_h]
            x[..., :4] /= min(ratio)

            # 限制边界框在图像边界内
            x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])
            x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])

            # 处理掩膜
            masks = self.process_mask(protos[0], x[:, 6:], x[:, :4], im0.shape)

            # 将掩膜转换为分割区域
            segments = self.masks2segments(masks)
            return x[..., :6], segments, masks  # 返回边界框、分割区域和掩膜
        else:
            return [], [], []

    @staticmethod
    def masks2segments(masks):
        """
        将掩膜转换为分割区域
        Args:
            masks (numpy.ndarray): 模型输出的掩膜,形状为 (n, h, w)
        Returns:
            segments (List): 分割区域的列表
        """
        segments = []
        for x in masks.astype("uint8"):
            c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]  # 找到轮廓
            if c:
                c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
            else:
                c = np.zeros((0, 2))  # 如果没有找到分割区域,返回空数组
            segments.append(c.astype("float32"))
        return segments

    @staticmethod
    def crop_mask(masks, boxes):
        """
        裁剪掩膜,使其与边界框对齐
        Args:
            masks (Numpy.ndarray): [n, h, w] 掩膜数组
            boxes (Numpy.ndarray): [n, 4] 边界框
        Returns:
            (Numpy.ndarray): 裁剪后的掩膜
        """
        n, h, w = masks.shape
        x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1)
        r = np.arange(w, dtype=x1.dtype)[None, None, :]
        c = np.arange(h, dtype=x1.dtype)[None, :, None]
        return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))

    def process_mask(self, protos, masks_in, bboxes, im0_shape):
        """
        处理模型输出的掩膜
        Args:
            protos (numpy.ndarray): [mask_dim, mask_h, mask_w] 掩膜原型
            masks_in (numpy.ndarray): [n, mask_dim] 掩膜数量
            bboxes (numpy.ndarray): 缩放到原始图像尺寸的边界框
            im0_shape (tuple): 原始输入图像的尺寸 (h,w,c)
        Returns:
            (numpy.ndarray): 处理后的掩膜
        """
        c, mh, mw = protos.shape
        masks = np.matmul(masks_in, protos.reshape((c, -1))).reshape((-1, mh, mw)).transpose(1, 2, 0)  # HWN
        masks = np.ascontiguousarray(masks)
        masks = self.scale_mask(masks, im0_shape)  # 将掩膜从 P3 尺寸缩放到原始输入图像大小
        masks = np.einsum("HWN -> NHW", masks)  # HWN -> NHW
        masks = self.crop_mask(masks, bboxes)  # 裁剪掩膜
        return np.greater(masks, 0.5)  # 返回二值化后的掩膜

    @staticmethod
    def scale_mask(masks, im0_shape, ratio_pad=None):
        """
        将掩膜缩放至原始图像大小
        Args:
            masks (np.ndarray): 缩放和填充后的掩膜
            im0_shape (tuple): 原始图像大小
            ratio_pad (tuple): 填充与原始图像的比例
        Returns:
            masks (np.ndarray): 缩放后的掩膜
        """
        im1_shape = masks.shape[:2]
        if ratio_pad is None:  # 计算比例
            gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1])  # 比例
            pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2  # 填充
        else:
            pad = ratio_pad[1]

        # 计算掩膜的边界
        top, left = int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1))  # y, x
        bottom, right = int(round(im1_shape[0] - pad[1] + 0.1)), int(round(im1_shape[1] - pad[0] + 0.1))
        if len(masks.shape) < 2:
            raise ValueError(f'"len of masks shape" 应该是 2 或 3,但得到 {len(masks.shape)}')
        masks = masks[top:bottom, left:right]
        masks = cv2.resize(
            masks, (im0_shape[1], im0_shape[0]), interpolation=cv2.INTER_LINEAR
        )  # 使用 INTER_LINEAR 插值调整大小
        if len(masks.shape) == 2:
            masks = masks[:, :, None]
        return masks

    def draw_and_visualize(self, im, bboxes, segments, vis=False, save=True):
        """
        绘制和可视化结果
        Args:
            im (np.ndarray): 原始图像,形状为 [h, w, c]
            bboxes (numpy.ndarray): [n, 4],n 是边界框数量
            segments (List): 分割区域的列表
            vis (bool): 是否使用 OpenCV 显示图像
            save (bool): 是否保存带注释的图像
        Returns:
            None
        """
        # 创建图像副本
        im_canvas = im.copy()

        for (*box, conf, cls_), segment in zip(bboxes, segments):
            # 获取类别对应的颜色
            color = self.get_color_for_class(int(cls_))

            # 绘制轮廓和填充掩膜
            # cv2.polylines(im, np.int32([segment]), True, (255, 255, 255), 2)  # 绘制白色边框
            cv2.fillPoly(im_canvas, np.int32([segment]), color)  # 使用类别对应的颜色填充多边形

            # 绘制边界框
            cv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), color, 1, cv2.LINE_AA)
            # 在图像上绘制类别名称和置信度
            cv2.putText(im, f"{self.classes[cls_]}: {conf:.3f}", (int(box[0]), int(box[1] - 9)),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1, cv2.LINE_AA)

        # 将图像和绘制的多边形混合
        im = cv2.addWeighted(im_canvas, 0.3, im, 0.7, 0)

        # 显示图像
        if vis:
            cv2.imshow("seg_result_picture", im)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

        # 保存图像
        if save:
            cv2.imwrite("seg_result_picture.jpg", im)


if __name__ == "__main__":
    # 创建命令行参数解析器
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, default=r"yolo11n-seg.onnx", help="ONNX 模型路径")
    parser.add_argument("--source", type=str,
                        default=r"cat.jpg",
                        help="输入图像路径")
    parser.add_argument("--conf", type=float, default=0.6, help="置信度阈值")
    parser.add_argument("--iou", type=float, default=0.45, help="NMS 的 IoU 阈值")
    args = parser.parse_args()

    # 加载模型
    model = YOLO11Seg(args.model)

    # 使用 OpenCV 读取图像
    img = cv2.imread(args.source)

    # 模型推理
    boxes, segments, _ = model(img, conf_threshold=args.conf, iou_threshold=args.iou)

    # 如果检测到目标,绘制边界框和分割区域
    if len(boxes) > 0:
        model.draw_and_visualize(img, boxes, segments, vis=False, save=True)

在这里插入图片描述

四、C++的onnx模型调用

在这里插入图片描述
在这里插入图片描述

#include <onnxruntime_cxx_api.h>
#include <opencv2/opencv.hpp>
#include <fstream>

using namespace cv;
using namespace std;


int main(int argc, char** argv)
{


	cv::Mat frame = cv::imread("cat.jpg", 1);
	std::string onnxpath = "yolo11m.onnx";

	//step2:load labels
	std::vector<std::string> labels;
	std::ifstream inputFile("coco.names");
	if (inputFile.is_open())
	{
		std::string classLine;
		while (std::getline(inputFile, classLine))
			labels.push_back(classLine);
		inputFile.close();
	}

	//step-3:load onnx model
	int ih = frame.rows;
	int iw = frame.cols;
	std::wstring modelPath = std::wstring(onnxpath.begin(), onnxpath.end());
	Ort::SessionOptions session_options = Ort::SessionOptions();;
	Ort::Env env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "yolov11");
	std::cout << "onnxruntime inference try to use GPU Device" << std::endl;
	Ort::Session session_(env, modelPath.c_str(), session_options);

	std::vector<std::string> input_node_names;
	std::vector<std::string> output_node_names;

	size_t numInputNodes = session_.GetInputCount();
	size_t numOutputNodes = session_.GetOutputCount();
	Ort::AllocatorWithDefaultOptions allocator;
	input_node_names.reserve(numInputNodes);

	int input_w = 0;
	int input_h = 0;
	for (int i = 0; i < numInputNodes; i++) {
		//onnx newest version-1.14
		auto input_name = session_.GetInputNameAllocated(i, allocator);
		input_node_names.push_back(input_name.get());

		//onnx old version-1.8
		//input_node_names.push_back(session_.GetInputName(i, allocator));

		Ort::TypeInfo input_type_info = session_.GetInputTypeInfo(i);
		auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
		auto input_dims = input_tensor_info.GetShape();
		input_w = input_dims[3];
		input_h = input_dims[2];
		std::cout << "input format: NxCxHxW = " << input_dims[0] << "x" << input_dims[1] << "x" << input_dims[2] << "x" << input_dims[3] << std::endl;
	}

	//step-4:get output parameter
	int output_h = 0;
	int output_w = 0;
	Ort::TypeInfo output_type_info = session_.GetOutputTypeInfo(0);
	auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
	auto output_dims = output_tensor_info.GetShape();
	output_h = output_dims[1];
	output_w = output_dims[2];
	std::cout << "output format : HxW = " << output_dims[1] << "x" << output_dims[2] << std::endl;
	for (int i = 0; i < numOutputNodes; i++)
	{
		//onnx newest version-1.14
		auto out_name = session_.GetOutputNameAllocated(i, allocator);
		output_node_names.push_back(out_name.get());

		//onnx old version-1.8
		//output_node_names.push_back(session_.GetOutputName(i, allocator));
	}
	std::cout << "input: " << input_node_names[0] << " output: " << output_node_names[0] << std::endl;

	//step-5:get infer result
	int64 start = cv::getTickCount();
	int w = frame.cols;
	int h = frame.rows;
	int _max = std::max(h, w);
	cv::Mat image = cv::Mat::zeros(cv::Size(_max, _max), CV_8UC3);
	cv::Rect roi(0, 0, w, h);
	frame.copyTo(image(roi));

	// fix bug, boxes consistence!
	float x_factor = image.cols / static_cast<float>(input_w);
	float y_factor = image.rows / static_cast<float>(input_h);

	cv::Mat blob = cv::dnn::blobFromImage(image, 1 / 255.0, cv::Size(input_w, input_h), cv::Scalar(0, 0, 0), true, false);
	size_t tpixels = input_h * input_w * 3;
	std::array<int64_t, 4> input_shape_info{ 1, 3, input_h, input_w };

	// set input data and inference
	auto allocator_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
	Ort::Value input_tensor_ = Ort::Value::CreateTensor<float>(allocator_info, blob.ptr<float>(), tpixels, input_shape_info.data(), input_shape_info.size());
	const std::array<const char*, 1> inputNames = { input_node_names[0].c_str() };
	const std::array<const char*, 1> outNames = { output_node_names[0].c_str() };
	std::vector<Ort::Value> ort_outputs;
	try {
		ort_outputs = session_.Run(Ort::RunOptions{ nullptr }, inputNames.data(), &input_tensor_, 1, outNames.data(), outNames.size());
	}
	catch (std::exception e) {
		std::cout << e.what() << std::endl;
	}

	// output data
	const float* pdata = ort_outputs[0].GetTensorMutableData<float>();
	cv::Mat dout(output_h, output_w, CV_32F, (float*)pdata);
	cv::Mat det_output = dout.t(); // 8400x84

	// post-process
	std::vector<cv::Rect> boxes;
	std::vector<int> classIds;
	std::vector<float> confidences;

	for (int i = 0; i < det_output.rows; i++) {
		cv::Mat classes_scores = det_output.row(i).colRange(4, 84);
		cv::Point classIdPoint;
		double score;
		minMaxLoc(classes_scores, 0, &score, 0, &classIdPoint);

		//between 0~1
		if (score > 0.25)
		{
			float cx = det_output.at<float>(i, 0);
			float cy = det_output.at<float>(i, 1);
			float ow = det_output.at<float>(i, 2);
			float oh = det_output.at<float>(i, 3);
			int x = static_cast<int>((cx - 0.5 * ow) * x_factor);
			int y = static_cast<int>((cy - 0.5 * oh) * y_factor);
			int width = static_cast<int>(ow * x_factor);
			int height = static_cast<int>(oh * y_factor);
			cv::Rect box;
			box.x = x;
			box.y = y;
			box.width = width;
			box.height = height;

			boxes.push_back(box);
			classIds.push_back(classIdPoint.x);
			confidences.push_back(score);
		}
	}

	// NMS
	std::vector<int> indexes;
	cv::dnn::NMSBoxes(boxes, confidences, 0.25, 0.45, indexes);
	for (size_t i = 0; i < indexes.size(); i++) {
		int index = indexes[i];
		int idx = classIds[index];
		cv::rectangle(frame, boxes[index], cv::Scalar(0, 0, 255), 2, 8);
		cv::rectangle(frame, cv::Point(boxes[index].tl().x, boxes[index].tl().y - 20),
			cv::Point(boxes[index].br().x, boxes[index].tl().y), cv::Scalar(0, 255, 255), -1);

		std::string classString = labels[idx] + ' ' + std::to_string(confidences[idx]).substr(0, 4);
		putText(frame, classString, cv::Point(boxes[index].tl().x, boxes[index].tl().y), cv::FONT_HERSHEY_PLAIN, 2.0, cv::Scalar(255, 0, 0), 2, 8);
		cv::imshow("YOLOv11 onnxrunning", frame);
	}


	//calculate FPS render it
	float t = (cv::getTickCount() - start) / static_cast<float>(cv::getTickFrequency());
	putText(frame, cv::format("FPS: %.2f", 1.0 / t), cv::Point(20, 40), cv::FONT_HERSHEY_PLAIN, 2.0, cv::Scalar(255, 0, 0), 2, 8);
	cv::imshow("YOLOv11 onnxrunning", frame);
	cv::imwrite("result.jpg", frame);
	cv::waitKey(0);

	session_options.release();
	session_.release();
	return 0;
}

五 、视频流的检测

在这里插入图片描述

#include <onnxruntime_cxx_api.h>
#include <opencv2/opencv.hpp>
#include <fstream>

using namespace cv;
using namespace std;


int main(int argc, char** argv) 
{


	int c = 0;
	int frameRate = 10;
	Mat frame;
	namedWindow("video-demo", WINDOW_AUTOSIZE);
	VideoCapture capture;
	//连接视频
	capture.open("b.mp4");
	if (!capture.isOpened()) {
		printf("could not load video data...\n");
		return -1;
	}

	int frames = capture.get(CAP_PROP_FRAME_COUNT);//获取视频针数目(一帧就是一张图片)
	double fps = capture.get(CAP_PROP_FPS);//获取每针视频的频率
	// 获取帧的视频宽度,视频高度
	Size size = Size(capture.get(CAP_PROP_FRAME_WIDTH), capture.get(CAP_PROP_FRAME_HEIGHT));
	cout << frames << endl;
	cout << fps << endl;
	cout << size << endl;

	//cv::Mat frame = cv::imread("2222.jpg",1);
	
	std::string onnxpath = "yolo11n-seg.onnx";

	//step2:load labels
	std::vector<std::string> labels;
	std::ifstream inputFile("coco.names");
	if (inputFile.is_open())
	{
		std::string classLine;
		while (std::getline(inputFile, classLine))
			labels.push_back(classLine);
		inputFile.close();
	}

	//step-3:load onnx model
	std::wstring modelPath = std::wstring(onnxpath.begin(), onnxpath.end());
	Ort::SessionOptions session_options= Ort::SessionOptions();;
	Ort::Env env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "yolov11");
	std::cout << "onnxruntime inference try to use GPU Device" << std::endl;
	Ort::Session session_(env, modelPath.c_str(), session_options);

	std::vector<std::string> input_node_names;
	std::vector<std::string> output_node_names;

	size_t numInputNodes = session_.GetInputCount();
	size_t numOutputNodes = session_.GetOutputCount();
	Ort::AllocatorWithDefaultOptions allocator;
	input_node_names.reserve(numInputNodes);

	int input_w = 0;
	int input_h = 0;
	for (int i = 0; i < numInputNodes; i++) {
		//onnx newest version-1.14
		auto input_name = session_.GetInputNameAllocated(i, allocator);
		input_node_names.push_back(input_name.get());

		//onnx old version-1.8
		//input_node_names.push_back(session_.GetInputName(i, allocator));

		Ort::TypeInfo input_type_info = session_.GetInputTypeInfo(i);
		auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
		auto input_dims = input_tensor_info.GetShape();
		input_w = input_dims[3];
		input_h = input_dims[2];
		std::cout << "input format: NxCxHxW = " << input_dims[0] << "x" << input_dims[1] << "x" << input_dims[2] << "x" << input_dims[3] << std::endl;
	}

	//step-4:get output parameter
	int output_h = 0;
	int output_w = 0;
	Ort::TypeInfo output_type_info = session_.GetOutputTypeInfo(0);
	auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
	auto output_dims = output_tensor_info.GetShape();
	output_h = output_dims[1]; 
	output_w = output_dims[2]; 
	std::cout << "output format : HxW = " << output_dims[1] << "x" << output_dims[2] << std::endl;
	for (int i = 0; i < numOutputNodes; i++) 
	{
		//onnx newest version-1.14
		auto out_name = session_.GetOutputNameAllocated(i, allocator);
		output_node_names.push_back(out_name.get());

		//onnx old version-1.8
		//output_node_names.push_back(session_.GetOutputName(i, allocator));
	}
	std::cout << "input: " << input_node_names[0] << " output: " << output_node_names[0] << std::endl;


	

	for (;;)
	{
		//将视频转给每一张张图进行处理
		capture >> frame;

		if (c % frameRate == 0)
		{

			//step-5:get infer result
			int64 start = cv::getTickCount();
			int w = frame.cols;
			int h = frame.rows;

			if (w>0 &&h>0)
			{

				int _max = std::max(h, w);
				cv::Mat image = cv::Mat::zeros(cv::Size(_max, _max), CV_8UC3);
				cv::Rect roi(0, 0, w, h);
				frame.copyTo(image(roi));


				// fix bug, boxes consistence!
				float x_factor = image.cols / static_cast<float>(input_w);
				float y_factor = image.rows / static_cast<float>(input_h);

				cv::Mat blob = cv::dnn::blobFromImage(image, 1 / 255.0, cv::Size(input_w, input_h), cv::Scalar(0, 0, 0), true, false);
				size_t tpixels = input_h * input_w * 3;
				std::array<int64_t, 4> input_shape_info{ 1, 3, input_h, input_w };


				// set input data and inference
				auto allocator_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
				Ort::Value input_tensor_ = Ort::Value::CreateTensor<float>(allocator_info, blob.ptr<float>(), tpixels, input_shape_info.data(), input_shape_info.size());
				const std::array<const char*, 1> inputNames = { input_node_names[0].c_str() };
				const std::array<const char*, 1> outNames = { output_node_names[0].c_str() };
				std::vector<Ort::Value> ort_outputs;
				try {
					ort_outputs = session_.Run(Ort::RunOptions{ nullptr }, inputNames.data(), &input_tensor_, 1, outNames.data(), outNames.size());
				}
				catch (std::exception e) {
					std::cout << e.what() << std::endl;
				}

				// output data
				const float* pdata = ort_outputs[0].GetTensorMutableData<float>();
				cv::Mat dout(output_h, output_w, CV_32F, (float*)pdata);
				cv::Mat det_output = dout.t(); // 8400x84

				// post-process
				std::vector<cv::Rect> boxes;
				std::vector<int> classIds;
				std::vector<float> confidences;

				for (int i = 0; i < det_output.rows; i++) {
					cv::Mat classes_scores = det_output.row(i).colRange(4, 84);
					cv::Point classIdPoint;
					double score;
					minMaxLoc(classes_scores, 0, &score, 0, &classIdPoint);

					//between 0~1
					if (score > 0.25)
					{
						float cx = det_output.at<float>(i, 0);
						float cy = det_output.at<float>(i, 1);
						float ow = det_output.at<float>(i, 2);
						float oh = det_output.at<float>(i, 3);
						int x = static_cast<int>((cx - 0.5 * ow) * x_factor);
						int y = static_cast<int>((cy - 0.5 * oh) * y_factor);
						int width = static_cast<int>(ow * x_factor);
						int height = static_cast<int>(oh * y_factor);
						cv::Rect box;
						box.x = x;
						box.y = y;
						box.width = width;
						box.height = height;

						boxes.push_back(box);
						classIds.push_back(classIdPoint.x);
						confidences.push_back(score);
					}
				}

				// NMS
				std::vector<int> indexes;
				cv::dnn::NMSBoxes(boxes, confidences, 0.25, 0.45, indexes);

				for (size_t i = 0; i < indexes.size(); i++) {
					int index = indexes[i];
					int idx = classIds[index];
					cv::rectangle(frame, boxes[index], cv::Scalar(0, 0, 255), 2, 8);
					cv::rectangle(frame, cv::Point(boxes[index].tl().x, boxes[index].tl().y - 20),
						cv::Point(boxes[index].br().x, boxes[index].tl().y), cv::Scalar(0, 255, 255), -1);

					std::string classString = labels[idx] + ' ' + std::to_string(confidences[idx]).substr(0, 4);
					putText(frame, classString, cv::Point(boxes[index].tl().x, boxes[index].tl().y), cv::FONT_HERSHEY_PLAIN, 2.0, cv::Scalar(255, 0, 0), 2, 8);
					//cv::imshow("YOLOv11 onnxrunning", frame);
				}


				float t = (cv::getTickCount() - start) / static_cast<float>(cv::getTickFrequency());
				putText(frame, cv::format("FPS: %.2f", 1.0 / t), cv::Point(20, 40), cv::FONT_HERSHEY_PLAIN, 2.0, cv::Scalar(255, 0, 0), 2, 8);


				//视频播放完退出
				if (frame.empty())break;
				imshow("video-demo", frame);
				//在视频播放期间按键退出
				if (waitKey(33) >= 0) break;
			}
		}
		c++;
	}
	//释放
	capture.release();
	session_options.release();
	session_.release();
	return 0;
}

后续

Qt的调用,当然也是很简单的!!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2224834.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring Boot 应用开发全攻略:从入门到精通

Spring Boot 应用开发全攻略&#xff1a;从入门到精通 引言 在当今快速发展的软件开发领域&#xff0c;Spring Boot 作为一种快速开发框架&#xff0c;凭借其简洁、易用的特性&#xff0c;赢得了开发者的广泛青睐。无论是微服务架构还是传统的单体应用&#xff0c;Spring Boo…

Redis 单机、主从、哨兵和集群架构详解和搭建

目录 前言 单机部署 检查安装 gcc 环境 下载安装 Redis 启动 Redis 关闭 Redis 配置Redis 主从部署 整体架构图 主从复制配置 重启 Redis 验证 主从复制的作⽤ 主从复制缺点 哨兵部署&#xff08;Sentinel&#xff09; 整体架构图 哨兵模式配置 启动哨兵 验证…

首席数据官和首席数据分析官

根据分析人士的预测&#xff0c;首席数据官&#xff08;CDO&#xff09;和首席数据分析官&#xff08;CDAO&#xff09;必须更有效地展示他们对企业和AI项目的价值&#xff0c;以保障其在高管层的地位。Gartner的最新报告指出&#xff0c;CDO和CDAO在AI时代需要重新塑造自身定位…

ElegantBook:优美的 LATEX 书籍模板(中文的latex模版)

关注B站可以观看更多实战教学视频&#xff1a;hallo128的个人空间 ElegantBook&#xff1a;优美的 LATEX 书籍模板&#xff08;中文的latex模版&#xff09; Github地址&#xff1a;https://github.com/ElegantLaTeX/ElegantBook使用说明文档&#xff1a;https://static.latexs…

C++11实践指北

C11&#xff1a;书、在线工具、库。 书 1. 《现代C语言核心特性解析》 覆盖 C11~C20 特性的讲解。 视频跟读&#xff1a;https://www.bilibili.com/video/BV1nN4y1j7fv 现代CPP随笔_0CCh - 每天5分钟了解现代C新特性 2. 《C Primer》第五版 基于 C11 的 C 入门书。 正在看…

故障诊断 | CNN-ResNets滚动轴承故障诊断实例代码

故障诊断 | CNN-ResNets滚动轴承故障诊断实例代码 目录 故障诊断 | CNN-ResNets滚动轴承故障诊断实例代码效果一览基本介绍程序设计参考资料 效果一览 基本介绍 CNN-ResNets&#xff08;卷积神经网络-残差网络&#xff09;在滚动轴承故障诊断中是一种常用的方法。这种方法利用…

使用Angular构建动态Web应用

&#x1f496; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4bb; Gitee主页&#xff1a;瑕疵的gitee主页 &#x1f680; 文章专栏&#xff1a;《热点资讯》 使用Angular构建动态Web应用 1 引言 2 Angular简介 3 安装Angular 4 创建Angular项目 5 设计应用结构 6 创建组件 7 …

Python小游戏14——雷霆战机

首先&#xff0c;你需要确保安装了Pygame库。如果你还没有安装&#xff0c;可以使用pip来安装&#xff1a; bash pip install pygame 代码如下&#xff1a; python import pygame import sys import random # 初始化Pygame pygame.init() # 设置屏幕大小 screen_width 800 scr…

云原生笔记

#1024程序员节|征文# 单页应用(Single-Page Application&#xff0c;SPA) 云原生基础 云原生全景内容宽泛&#xff0c;以至于刚开始就极具挑战性。 云原生应用是高度分布式系统&#xff0c;它们存在于云中&#xff0c;并且能够对变化保持韧性。系统是由多个服务组成的&#…

java-JVM面试问题-2024

1、简单介绍下虚拟机内存模型&#xff1f; VM由三部分组成&#xff1a;类加载子系统、运行时数据区、执行引擎 类加载子系统&#xff1a;通过类加载机制加载类的class文件&#xff0c;如果该类是第一次加载&#xff0c;会执行加载、验证、解析。只负责class文件的加载&#x…

基于neo4j的医疗问诊系统

当你身体不适时&#xff0c;想要找到准确的答案却经常遇到模棱两可的答复&#xff0c;糟心吗&#xff1f;现在&#xff0c;基于neo4j的智能医疗问诊系统为你带来全新体验&#xff01;我们设计了一个具备自动化问答功能的医疗系统&#xff0c;帮助用户快速获取专业的健康知识答案…

如何具备阅读JAVA JDK虚拟机源码能力

源码位置https://github.com/openjdk/jdk 核心实现源码[部分截图] /* * Copyright (c) 1995, 2024, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistr…

《欢乐饭米粒儿》持续热播:第四期小品笑中有思,引发观众共鸣

由鲜博士独家冠名播出的独创小品剧《欢乐饭米粒儿》第九季自播出以来&#xff0c;便以其贴近生活的题材和幽默风趣的表演赢得了观众的喜爱。每个小品不仅让人捧腹大笑&#xff0c;更在笑声中传递了深刻的生活哲理。近日&#xff0c;《欢乐饭米粒儿》又带来了几个新的小品&#…

计算机视觉专栏(1)【LeNet】论文详解

Lenet 系列 论文精讲部分0.摘要1.引言2.CNN3.结果分析4.总结 论文精讲部分 本专栏旨在深入解析计算机视觉模型的论文及其发展背景&#xff0c;并通过代码部分的实际实验来加深理解。读者可以根据自己的需要参考其中的内容。其主体为原文&#xff0c;笔者理解内容会采用引用格式…

一站式学习 Shell 脚本语法与编程技巧,踏出自动化的第一步

文章目录 1. 初识 Shell 解释器1.1 Shell 类型1.2 Shell 的父子关系 2. 编写第一个 Shell 脚本3. Shell 脚本语法3.1 脚本格式3.2 注释3.2.1 单行注释3.2.2 多行注释 3.3 Shell 变量3.3.1 系统预定义变量&#xff08;环境变量&#xff09;printenv 查看所有环境变量set 查看所有…

HTML3D旋转相册

文章目录 序号目录1HTML满屏跳动的爱心(可写字)2HTML五彩缤纷的爱心3HTML满屏漂浮爱心4HTML情人节快乐

[Ansible实践笔记]自动化运维工具Ansible(一):初探ansibleansible的点对点模式

文章目录 Ansible介绍核心组件任务执行方式 实验前的准备更新拓展安装包仓库在ansible主机上配置ip与主机名的对应关系生成密钥对将公钥发送到被管理端&#xff0c;实现免密登录测试一下是否实现免密登录 常用工具ansibleansible—docansible—playbook 主要配置文件 Ansible 模…

centeros7 编译ffmpeg

使用yum安装的路似乎已经堵住了&#xff0c;请求的镜像全是404或503 1.打开终端并使用yum安装EPEL存储库(Extra Packages for Enterprise Linux)&#xff1a;sudo yum install epel-release2.接下来&#xff0c;使用以下命令来安装FFmpeg&#xff1a;sudo yum install ffmpeg …

uniApp 加载google地图 并规划路线

uniApp 加载google地图 并规划路线 备注:核心代码实例 备注: 打开谷歌地图失败的话 参考google开发文档 https://developers.google.com/maps/documentation/urls/ios-urlscheme?hlzh-cn#swift核心代码 mounted() {this.loadGoogleMapsScript(); }, methods: {//加载loadGo…

使用 Docker 管理完整项目:Java、Vue、Redis 和 Nginx 的一站式部署

个人名片 🎓作者简介:java领域优质创作者 🌐个人主页:码农阿豪 📞工作室:新空间代码工作室(提供各种软件服务) 💌个人邮箱:[2435024119@qq.com] 📱个人微信:15279484656 🌐个人导航网站:www.forff.top 💡座右铭:总有人要赢。为什么不能是我呢? 专栏导…