【C++干货篇】——C/C++内存管理

news2024/10/25 3:49:37

【C++干货篇】——C/C++内存管理

在这里插入图片描述

文章目录

  • 【C++干货篇】——C/C++内存管理
    • 1.C/C++内存分布
      • 1.1静态区/数据段:
      • 1.2常量区/代码段:
      • 1.3栈:
      • 1.4堆:
      • 1.5. 内存映射区:
    • 2.C语言中动态内存管理方式:`malloc/calloc/realloc/free`
      • 1. `malloc`
      • 2. `calloc`
      • 3. `realloc`
      • 总结
    • 3.C++内存管理方式
      • 3.1new/delete操作内置类型(内置类型用malloc还是new区别不大)
      • 3.2new和delete操作 自定义类型(推荐用new)
    • 4.operator new与operator delete函数(重要点)
    • 5.new和delete的实验原理
      • 5.1内置类型
      • 5.2自定义类型
    • 6.定位new表达式(placement-new)(了解)
    • 7.malloc/free和new/delete的区别!!!

1.C/C++内存分布

在 C/C++ 程序中,内存区域通常被划分为几个主要区域,这些区域在虚拟进程地址空间中具有不同的用途。下面是对每个区域及其存储内容的简要介绍:

1.1静态区/数据段:

存储内容全局变量、静态变量(包括静态局部变量)、未初始化的全局变量和静态变量(这些变量在内存中默认为零)
特性:静态区的生命周期是在整个程序运行期间,内存分配在程序启动时进行,程序结束时释放。

1.2常量区/代码段:

存储内容常量数据,例如字符串常量、常量字符、整数常量等。

特点:常量区通常是只读的,编译器在优化时可能会将相同的常量合并存储以节省内存。

1.3栈:

存储内容局部变量、函数参数、返回地址、函数调用时的上下文信息等。

特性:栈采用后进先出管理方式,内存分配和释放是在函数调用的过程中自动进行的。**函数调用建立栈帧,调用结束栈帧销毁。**栈的大小通常是有限的,如果使用过多会导致栈溢出。

1.4堆:

存储内容动态分配的内存块,例如通过 mallocnew 分配的内存。

特性:堆的内存管理由程序员控制,可能导致内存泄漏(memory leak)或堆碎片化。堆的大小通常受限于系统的可用内存。

1.5. 内存映射区:

存储内容动态链接库(DLLs)、共享内存、文件映射等。

特性:内存映射区域用于将特定的文件或设备映射到进程的地址空间中,可以实现高效的文件I/O、进程间通信等功能。

总结起来,这些内存区域在程序运行中承担着不同的职责,合理使用它们可以有效管理内存,提高程序的性能和稳定性。

我们来看下面的一段代码和相关问题:

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{
	static int staticVar = 1;
	int localVar = 1;
	int num1[10] = { 1, 2, 3, 4 };
	char char2[] = "abcd";
	const char* pChar3 = "abcd";
	int* ptr1 = (int*)malloc(sizeof(int) * 4);
	int* ptr2 = (int*)calloc(4, sizeof(int));
	int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);
	free(ptr1);
	free(ptr3);
}

选择题:

选项: A.栈 B.堆 C.数据段(静态区) D.代码段(常量区)

globalVar在哪里?C——全局变量

staticGlobalVar在哪里?C——静态变量

staticVar在哪里?C——局部静态变量,Test函数结束,它不销毁

localVar在哪里?A——局部变量

num1 在哪里?A——局部变量

char2在哪里?A

*char2在哪里?A

pChar3在哪里?A

*pChar3在哪里?D

ptr1在哪里?A

*ptr1在哪里?B

2.C语言中动态内存管理方式:malloc/calloc/realloc/free

void Test ()
{
    // 1.malloc/calloc/realloc的区别是什么?
    int* p2 = (int*)calloc(4, sizeof (int));
    int* p3 = (int*)realloc(p2, sizeof(int)*10);
    // 这里需要free(p2)吗?
    free(p3 );
}

malloc/calloc/realloc的区别?

在C语言中,malloccallocrealloc都是用于动态内存分配的函数,虽然它们有相似的目的,但各自的用法和特点不同:

1. malloc

  • 函数原型void* malloc(size_t size);
  • 功能:分配一块指定大小(以字节为单位)的未初始化内存。
  • 返回值:返回指向分配内存的指针。如果分配失败,返回 NULL
  • 初始化malloc 分配的内存内容是未定义的,可能包含任意数据。

2. calloc

  • 函数原型void* calloc(size_t num, size_t size);
  • 功能:分配一块内存,其大小是 num 个对象,每个对象的大小是 size 字节。实际上分配的总内存是 num * size 字节。
  • 返回值:同样返回指向分配内存的指针。如果分配失败,返回 NULL
  • 初始化calloc 分配的内存会被初始化为零。

3. realloc

  • 函数原型void* realloc(void* ptr, size_t size);
  • 功能:重新分配 ptr 指向的内存块的大小为 size 字节。如果 ptrNULL,则相当于调用 malloc;如果 size 为 0,则相当于调用 free(ptr)
  • 返回值:返回指向新分配内存的指针。如果重新分配失败,原来的内存块不会被释放,返回值为 NULL
  • 特点realloc 可能会移动原来的内存块到新的位置,如果移动成功,原指针的内存会被释放,因此需要保存返回的新指针。

总结

  • malloc:分配未初始化内存。
  • calloc:分配并初始化为零的内存。
  • realloc:改变已有内存块的大小,并可能移动内存块。

使用这些函数时,记得调用 free 来释放不再需要的内存,以防止内存泄漏。

3.C++内存管理方式

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。

3.1new/delete操作内置类型(内置类型用malloc还是new区别不大)

void Test()
{
    // 动态申请一个int类型的空间
    int* ptr4 = new int;
    // 动态申请一个int类型的空间并初始化为10
    int* ptr5 = new int(10);
    
    // 动态申请10个int类型的空间
    int* ptr6 = new int[3];
    int* ptr7 = new int[3]{1,2,3};
    int* ptr8 = new int[5]{1,2,3};
    
    delete ptr4;
    delete ptr5;
    delete[] ptr6;
}

在这里插入图片描述

注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用new[]和delete[],注意:匹配起来使用

3.2new和delete操作 自定义类型(推荐用new)

class A
{
public:
    A(int a = 0)
    : _a(a)
    {
        cout << "A():" << this << endl;
    }
    ~A()
    {
        cout << "~A():" << this << endl;
    }
private:
    int _a;
};
int main()
{
    //只申请空间
	A* p1 = (A*)malloc(sizeof(A));
    
    //申请空间+调用构造函数
	A* p2 = new A(1);//没有默认构造可以自己传参
    A* p3 = new A;//可以调用默认构造
    
	free(p1);//只释放空间
    
    //调用析构函数+释放空间
	delete p2;
    delete p3;

	// 内置类型是几乎是一样的
	int* p3 = (int*)malloc(sizeof(int)); 
	int* p4 = new int;
    
	free(p3);
	delete p4;
    
	A* p5 = (A*)malloc(sizeof(A) * 10);
	A* p6 = new A[10];
    
	free(p5);
	delete[] p6;
    
	return 0;
}

注意:在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与free不会。

4.operator new与operator delete函数(重要点)

newdelete是用户进行动态内存申请和释放的操作符operator newoperator delete是系统提供的全局函数new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间

/*
operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间失败,尝试执行空间不足应对施,如果改应对措施用户设置了,则继续申请,否则抛异常。
*/
void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
	// try to allocate size bytes
	void* p;
	while ((p = malloc(size)) == 0)
		if (_callnewh(size) == 0)
		{
			// report no memory
			// 如果申请内存失败了,这里会抛出bad_alloc 类型异常
			static const std::bad_alloc nomem;
			_RAISE(nomem);
		}
	return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void* pUserData)
{
	_CrtMemBlockHeader* pHead;
	RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
	if (pUserData == NULL)
		return;
	_mlock(_HEAP_LOCK); /* block other threads */
	__TRY
		/* get a pointer to memory block header */
		pHead = pHdr(pUserData);
	/* verify block type */
	_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
	_free_dbg(pUserData, pHead->nBlockUse);
	__FINALLY
		_munlock(_HEAP_LOCK); /* release other threads */
	__END_TRY_FINALLY
		return;
}
/*
free的实现
*/
#define free(p) _free_dbg(p, _NORMAL_BLOCK)

通过上述两个全局函数的实现知道,operator new实际也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。operator delete最终是通过free来释放空间的。

5.new和delete的实验原理

5.1内置类型

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:

new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。

5.2自定义类型

  • new的原理

    1.调用operator new函数申请空间;

    2.在申请的空间上执行构造函数,完成对象的构造。

  • delete的原理

    1.在空间上执行析构函数,完成对象中资源的清理工作;

    2.调用operator delete函数释放对象的空间。

  • new T[N]的原理

    1.调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对 象空间的申请

  • delete[]的原理
    1.在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
    2.调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间

6.定位new表达式(placement-new)(了解)

定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。

使用格式:

new (place_address) type或者new (place_address) type(initializer-list)

place_address必须是一个指针,initializer-list是类型的初始化列表

使用场景:

定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}
	~A()
	{
		cout << "~A():" << this << endl;
	}
private:
	int _a;
};
// 定位new/replacement new
int main()
{
	A* p1 = (A*)malloc(sizeof(A)); 
	new(p1)A; 
	p1->~A();
    free(p1);
    
	A* p2 = (A*)operator new(sizeof(A));
	new(p2)A(10);
	p2->~A();
	operator delete(p2);
    
	return 0;
}

7.malloc/free和new/delete的区别!!!

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地方是:

  1. malloc和free是函数,new和delete是操作符;

  2. malloc申请的空间不会初始化,new可以初始化;

  3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,如果是多个对象,[]中指定对象个数即可;

  4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型;

  5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常;

  6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理释放

最后,本篇文章到此结束,感觉不错的友友们可以一键三连支持一下笔者,有任何问题欢迎在评论区留言哦~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2222930.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[笔记] 关于CreateProcessWithLogonW函数创建进程

函数介绍 https://learn.microsoft.com/zh-cn/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw BOOL CreateProcessWithLogonW([in] LPCWSTR lpUsername,[in, optional] LPCWSTR lpDomain,[in] …

【lca,树上差分】P3128 [USACO15DEC] Max Flow P

题意 给定大小为 n ( 2 ≤ n ≤ 5 1 0 4 ) n(2 \leq n \leq 5 \times 10^4) n(2≤n≤5104) 的树&#xff0c;并给定 m ( 1 ≤ m ≤ 1 0 5 ) m(1 \leq m \leq 10^5) m(1≤m≤105) 条树上的路径&#xff08;给定两个端点&#xff0c;容易证明两个点树上路径唯一&#xff09;&…

分布式-单元化架构1

一 两地三中心 1.1 两地三中心* 两地指的是两个城市&#xff1a;同城&#xff0c;异地。三中心指的是三个数据中心&#xff1a;生产中心、同城容灾中心、异地容灾中心。 在同一个城市或者临近的城市建设两个相同的系统&#xff0c;双中心具备相当的业务处理能力&#xff0c;…

【MySQL】索引的机制、使用

在学习索引知识之前&#xff0c;我们可以先了解一下什么是索引。实际上&#xff0c;索引就是数据库中一个或多个列存储的结构&#xff0c;能够支持数据库管理系统在不扫描整张表的情况下也能查询到数据行&#xff0c;能够大大提升查询效率。举个例子&#xff0c;我们想要找到一…

技术成神之路:设计模式(二十二)命令模式

相关文章&#xff1a;技术成神之路&#xff1a;二十三种设计模式(导航页) 介绍 命令模式&#xff08;Command Pattern&#xff09;是一种行为设计模式&#xff0c;允许将请求&#xff08;命令&#xff09;封装为对象&#xff0c;从而使您可以使用不同的请求、队列或记录请求日…

硬件基础知识补全计划【一】电阻

一、电阻理论 1.1 电流定义 电流&#xff1a;电流的强弱用电流强度来描述&#xff0c;电流强度是单位时间内通过导体某一横截面的电荷量&#xff0c;简称电流&#xff0c;用I表示。1 秒内有 6.241509310^18 个元电荷通过横截面的电流&#xff0c;定义为 1 安 (A)。 电压&…

【C++】在Windows中使用Boost库——实现TCP、UDP通信

目录 一、编译Boost库 二、TCP服务端 三、TCP客户端 四、UDP连接 一、编译Boost库 1. 先去官网下载Boost库源码 2. 点击下载最新的版本 下载Windows环境的压缩包&#xff0c;然后解压 3. 在解压后的目录路径下找到“bootstrap.bat” 打开控制台&#xff0c;在“bootstrap.…

Linux LCD 驱动实验

LCD 是很常用的一个外设&#xff0c;在裸机篇中我们讲解了如何编写 LCD 裸机驱动&#xff0c;在 Linux 下LCD 的使用更加广泛&#xff0c;再搭配 QT 这样的 GUI 库下可以制作出非常精美的 UI 界面。本章我们就来学习一下如何在 Linux 下驱动 LCD 屏幕。 Framebuffer 设备 先来…

ShardingSphere 分库分表入门实战

分库分表 需求分析 如果我们的平台发展迅速&#xff0c;用户量激增&#xff0c;从数据库层面去思考&#xff0c;哪个表的数据会最大呢&#xff1f; 回顾一下我们的数据库设计&#xff1a; 1&#xff09;app 应用表 显然不会&#xff0c;成百上千的应用已经多&#xff0c;但…

ESP32移植Openharmony设备开发---(6)Mutex互斥锁

Mutex互斥锁 官方文档&#xff1a;OpenAtom OpenHarmony 基本概念 互斥锁又称互斥型信号量&#xff0c;用于实现对共享资源的独占式处理。当有任务持有时&#xff0c;这个任务获得该互斥锁的所有权。当该任务释放它时&#xff0c;任务失去该互斥锁的所有权。当一个任务持有互…

2024年最新苹果iOS证书申请创建App详细图文流程

iOS 证书设置指南&#xff1a; 对于开发者来说&#xff0c;在没有Mac电脑或对Xcode等开发工具不熟悉的情况下&#xff0c;如何快速完成IOS证书制作和IPA文件提交至开发者中心一直是一个难题。但是现在&#xff0c;有了初雪云提供的极简工具&#xff0c;您可以轻松实现这两个任…

Appium中的api(一)

目录 1.基础python代码准备 1--参数的一些说明 2--python内所要编写的代码 解释 2.如何获取包名和界面名 1-api 2-完整代码 代码解释 3.如何关闭驱动连接 4.安装卸载app 1--卸载 2--安装 5.判断app是否安装 6.将应用放到后台在切换为前台的时间 7.UIAutomatorViewer的使用 1--找…

git rebase的常用场景: 交互式变基, 变基和本地分支基于远端分支的变基

文章目录 作用应用场景场景一&#xff1a;交互式变基(合并同一条线上的提交记录) —— git rebase -i HEAD~2场景二&#xff1a;变基(合并分支) —— git rebase [其他分支名称]场景三&#xff1a;本地分支与远端分支的变基 作用 使git的提交记录变得更加简洁 应用场景 场景…

【华为HCIP实战课程十六】OSPF虚链路Vlink,网络工程师

一、vlink续 区域内部的路由优于区域之间的路由,区域之间优于外部路由,外部路由类型1优于外部类型2 只有同一级别的路由才会对比cost <R3>tracert 11.1.1.1 traceroute to 11.1.1.1(11.1.1.1), max hops: 30 ,packet length: 40,press CTRL_C to break 1 10.1.35.5 …

Wave-Mamba 论文总结

题目&#xff1a;Exchange&#xff08;交换&#xff09; Wave-Mamba: Wavelet State Space Model&#xff08;小波状态空间模型&#xff09;for Ultra-High-Definition&#xff08;超高清&#xff09;Low-Light Image Enhancement&#xff08;弱光图像增强&#xff09; 论文&am…

stm32单片机基于rt-thread 的 串行 Flash 通用驱动库 SFUD 的使用

1024程序员节&#xff5c;征文 一、sfud 通用驱动库介绍 SFUD 是一款开源的串行 SPI Flash 通用驱动库。由于现有市面的串行 Flash 种类居多&#xff0c;各个 Flash 的规格及命令存在差异&#xff0c; SFUD 就是为了解决这些 Flash 的差异现状而设计&#xff0c;能够支持不同品…

二叉树习题其一Java【力扣】【算法学习day.8】

前言 书接上篇文章介绍的链表基础知识—>二叉树理论&#xff0c;这篇文章我们将通过习题来掌握哈希表的使用。 ###我做这类文档一个重要的目的还是给正在学习的大家提供方向&#xff08;例如想要掌握基础用法&#xff0c;该刷哪些题&#xff1f;&#xff09;我的解析也不会…

PHP多功能图片编辑器

PHP多功能图片编辑器 前言效果图功能说明平台支持情况部分源码领取源码下期更新 前言 PHP多功能图片编辑器 工具箱网站源码无需数据库上传即用&#xff0c;测试了一下还可以&#xff0c;免费分享自行研究。 效果图 功能说明 ✓ 无需上传&#xff0c;使用浏览器自身进行转换 …

049_python基于Python的热门微博数据可视化分析

目录 系统展示 开发背景 代码实现 项目案例 获取源码 博主介绍&#xff1a;CodeMentor毕业设计领航者、全网关注者30W群落&#xff0c;InfoQ特邀专栏作家、技术博客领航者、InfoQ新星培育计划导师、Web开发领域杰出贡献者&#xff0c;博客领航之星、开发者头条/腾讯云/AW…

多模态大语言模型(MLLM)-Deepseek Janus

论文链接&#xff1a;https://arxiv.org/abs/2410.13848 代码链接&#xff1a;https://github.com/deepseek-ai/Janus 本次解读Janus: Decoupling Visual Encoding for Unified Multimodal Understanding and Generation 前言 Deepseek出品&#xff0c;必属精品。 创新点 传…