前言
大模型旨在解决人类面临的各种问题,提高人类的生产力和生活质量。是一门涉及计算机科学、数学、哲学、心理学等多个领域的交叉学科,旨在研究如何使计算机能够像人类一样思考、学习、推理和创造。大模型的出现,让很多产业人士认为这项技术会改变信息产业格局,即基于数据的互联网时代、基于算力的云计算时代之后,将进入基于大模型的AI时代。
一 基本概念
大模型是指包含超大规模参数(通常在十亿个以上)的神经网络模型,主要在自然语言处理领域得到广泛应用。这些大模型包含数十亿个参数,模型大小可以达到数百GB甚至更大,拥有强大的表达能力和学习能力。
超大模型主要指的是包含超大参数规模和超大计算量的深度学习模型,如超大规模人脸识别、图像分类网络等。这些模型的参数量可以高达数十亿甚至上百亿,计算量也非常庞大,通常需要大规模的硬件资源和长时间的计算才能训练完成。
Foundation Model则是指在人工智能领域中,通过大量数据训练的强大的预训练模型。这些基础模型通常使用深度学习技术进行训练,如Transformer架构等。它们被广泛应用于自然语言处理、计算机视觉、语音识别等领域的各种任务,被认为是构建