《深度学习》 了解YOLO基本知识

news2024/11/28 8:23:37

目录

一、关于YOLO

1、什么是YOLO

2、经典的检测方法

1)one-stage单阶段检测

模型指标介绍:

2)two-stage多阶段检测

二、关于mAP指标

1、概念

2、IOU

3、关于召回率和准确率

4、示例

5、计算mAP


一、关于YOLO

1、什么是YOLO

        YOLO(You Only Look Once)是一种基于深度学习的目标检测算法,由Joseph Redmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别位置,例如下图所示。

        YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术,使得算法能够在不同尺度下对目标进行检测。

        关于不同尺度:例如在ResNet残差网络中,无论是18层的还是36层的,他们的输入图像的尺寸都是固定不变的,不能传入不同尺寸的图像,而YOLO算法可以传入任意大小的图片,对其进行检测。

        相比于传统的目标检测算法,如R-CNN、Fast R-CNN和Faster R-CNN等,YOLO算法具有更快的检测速度和更高的准确率,这得益于其端到端训练方式单阶段检测的特性,使其可以同时处理分类定位任务,避免了传统方法中的多阶段处理过程。因此,YOLO算法广泛应用于实时目标检测自动驾驶等领域。

        关于端到端:

                端到端的训练是模型直接从原始输入数据学习如何映射到最终的输出目标,而不需要在中间阶段进行人为的特征工程或分割成多个独立的处理模块。例如,以前的汽车自动驾驶,通过车上搭载的摄像头拍摄实时画面,将获取到的画面每一帧图像传入模型进行识别,然后对模型的输出结果进行判断,判断是哪种类别,是否需要减速转向,然后再执行相应的减速转弯等操作,二当前端到端的训练,摄像头的事实画面帧传入模型后,经过检测后直接执行减速转向灯的操作。

2、经典的检测方法

1)one-stage单阶段检测

        YOLO系列、SSD

        单阶段检测指在目标检测任务中,通过一个网络模型直接预测出物体的类别和位置。

        优点:识别速度非常快,适合做实时检测任务

        缺点:正确率相对two-stage较低,尤其在小物体和严重遮挡的情况下性能较差。

        模型指标介绍:

        mAP指标:用于评判目标检测效果,其值越大越好,在机器学习的分类任务  

        FLOPS:表示模型进行一次前向传播(即处理一张图像)所需要的浮点运算次数。它是一个衡量算法效率的关键指标,与模型的计算量和推断速度密切相关。

        FPS:每秒可以处理的图像数量

2)two-stage多阶段检测

        Faster-rcnn和mask-Rcnn系列

        两阶段目标检测器是一种先生成候选框,然后对候选框进行分类和回归的检测方法。这种方法主要包括两个阶段:

        第一阶段:生成候选框。这通常通过一个类似于Selective Search或EdgeBoxes等区域提名算法来实现,该算法从输入图像中生成多个候选框。每个候选框都会经过一个CNN模型进行特征提取,然后通过分类器进行过滤,保留与目标物体更相似的候选框。

         第二阶段:在保留的候选框上进行精细的分类和回归。这个阶段通常使用另一个CNN模型或类似SVM的分类器来进行分类和回归。对于每个候选框,可能需要预测物体的类别、位置和大小等。 代表性的两阶段目标检测器包括R-CNN系列,以及其改进版本Fast R-CNN、Faster R-CNN和Mask R-CNN等。

        优点:正确率比较高,识别效果理想

        缺点:识别速度比较慢,通常达到5FPS

二、关于mAP指标

1、概念

        mAP(mean Average Precision)是用来评估目标检测算法性能的常用指标之一。它结合了目标检测算法的准确率和召回率,并考虑了不同类别之间的差异。

        准确率是指预测为该类别的样本中,被正确分类的比例。召回率是指该类别中被正确分类的样本数与该类别总样本数的比例。

2、IOU

        IOU用于评估预测框真实目标框之间的重叠程度,即计算预测框和真实目标框的交集面积除以它们的并集面积来进行计算。

3、关于召回率和准确率

        1、召回率:预测的结果是真的有多少是预测正确的

        2、准确率:真实的结果中有多少是预测正确的

4、示例

        如上图所示,蓝色框中为真实的人脸,红色框为预测的人脸位置,旁边的值则表示为置信度的值也叫阈值,表示模型对于预测结果的置信程度,即模型认为该结果是正确的程度。

        计算这个检测任务中精确率召回率:

               1、限制阈值,例如0.9,超过0.9表示检测正确1,否则检测失败,此时真实值1预测值为1的只有1个,真实值为1预测值为0的为2,真实值为0预测值为1的0个,真实值为0预测值为0的有0个。

               2、统计TP、FP、FN,TP=1,FP=0,FN=2,精确率=1/1,召回率=1/(1+2)=1/3

5、计算mAP

        根据不同的阈值(置信度),绘制出召回率精确率的曲线,将曲线以下的面积作为MAP值。当MAP值越大,则表示指标越好 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2222481.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

图的最小生成树算法--普里姆(Prim)算法和克鲁斯克尔(Kruskal)算法

一、图的最小生成树 最小生成树(Minimum spanning tree,MST)是最小权重生成树(Minimum weight spanning tree)的简称,是一个连通加权无向图中一棵权值最小的生成树。 在一给定的无向图 G ( V , E ) G …

Bug:通过反射修改@Autowired注入Bean的字段,明确存在,报错 NoSuchFieldException

【BUG】通过Autowired注入了一个Bean SeqNo,测试的时候需要修改其中的字段。通过传统的反射,无论如何都拿不到信息,关键是一方面可以通过IDEA跳转,一方面debug也确实能看到这个字段。但是每次调用set方法报错:NoSuchFi…

C++ [项目] 愤怒的小鸟

现在才发现C游戏的支持率这么高,那就发几篇吧 零、前情提要 此篇为 制作,由于他没有CSDN,于是由我代发 一、基本介绍 支持Dev-C5.11版本(务必调为英文输入法),基本操作看游戏里的介绍,怎么做的……懒得说,能看懂就看注释,没有的自己猜,如果你很固执……私我吧 …

伺服电动缸用途分析

力姆泰克伺服电动缸是一种先进的电动执行器,由伺服电动机和传动机构组成。它能够提供高精度的位置控制和力量输出,并具有快速响应和高重复性的特点。 力姆泰克伺服电动缸可广泛应用于自动化系统和机械设备中,例如工业机械、机床、自动化生产…

什么是恶意爬虫,有什么应对措施

在当今数字化时代,网络爬虫作为一种重要的数据收集工具,广泛应用于搜索引擎、数据分析、商业情报等领域。然而,恶意爬虫的出现,却给网站安全带来了前所未有的挑战。今天我们就来简单了解下什么是恶意爬虫,爬虫对网站的…

npm install node-sass安装失败

需求:搭建前端开发环境时,npm install报错,错误提示安装node_modules时,node-sass依赖包安装失败,网上找了好久解决方法,大家提示采用淘宝源等方式安装,都失败了了,尝试了很久终于找…

基于WIFI的智能台灯设计

1系统整体设计 本次围绕LED台灯,来设计一款基于WIFI的智能台灯,结合STM32单片机和多种传感器来共同完成该设计,整个设计的主要功能如下: 1.有自动和手动模式,自动模式自动调节光强,手动模式即手动控制&am…

垂起固定翼无人机挂载迫击抛投器技术详解

垂起固定翼无人机挂载迫击抛投器技术是一种结合了固定翼无人机长航时、高速度和垂直起降灵活性的先进技术。以下是对该技术的详细解析: 一、技术背景与优势 垂起固定翼无人机通过结合固定翼和多旋翼的设计,实现了无需长距离滑行跑道的垂直起降&#xf…

写了一个SpringBoot的后端管理系统(仅后端)pine-manage-system

文章目录 前言正文🚀 技术栈🛠️ 功能模块📁 项目结构🌈 接口文档🚀 项目启动 附录项目功能代码示例1、数据库拦截器-打印sql执行时间2、数据记录变更拦截器3、用户角色数据权限拦截器4、实体转换器接口5、触发器模版6…

青少年编程能力等级测评CPA C++ 四级试卷(2)

青少年编程能力等级测评CPA C 四级试卷(2) 一、单项选择题(共15题,每题3分,共45分) CP4_2_1. 下列有关面向对象程序设计的叙述中,不正确的是( )。 A.面向对…

__桥接模式

在C#中 初始版本 namespace _013_桥接模式 {/// <summary>/// 玩家抽象类/// </summary>public abstract class AbstractPlayer{protected IWeapon _weapon;//武器引用public void SetWeapon(IWeapon weapon){_weapon weapon;}//抽象方法使用武器public abstract…

Windows下Python3.8环境快速安装部署

为了帮助非python计算机软件开发人员快速上手使用python环境&#xff0c;我准备好了的Python 3.8免安装环境&#xff0c;并安装Jupyter Notebook以进行Python学习&#xff0c;以下是一个简单易懂的教程。请按照以下步骤操作&#xff1a; 步骤 1: 解压Python环境 下载并解压&a…

药智网数据库和摩熵医药数据库哪个好?

药智和摩熵医药(原药融云)作为医药行业内专业的医药数据库平台&#xff0c;它们各自在行业内占据着重要的地位&#xff0c;并且都在不断地创新和完善自己的数据库服务&#xff0c;以满足行业日益增长的需求为医药行业的数据服务、决策支持、研发分析等方面提供支持。. 但让大家…

java拆分地址中的省市县区,全国地址通用

package com.sure;import java.util.ArrayList; import java.util.LinkedHashMap; import java.util.List; import java.util.Map; import java.util.regex.Matcher; import java.util.regex.Pattern; /** * description: 拆分地址工具类 * fileName: AddressResolutionUtil.ja…

QExcel 保存数据 (QtXlsxWriter库 编译)

QtXlsxWriter 是一个用于在 Qt 应用程序中创建和操作 Excel XLSX 文件的库。它提供了一个简单的 API&#xff0c;使开发者能够轻松地生成和修改 Excel 文件&#xff0c;而无需依赖 Microsoft Excel 或其他外部应用程序。支持初始化、写文件、读文件、格式设置、合并单元格、加粗…

运维管理软件:如何引领一体化自动运维

在数字化转型的洪流中&#xff0c;运维团队正面临着前所未有的挑战与机遇。随着企业业务规模的不断扩大&#xff0c;IT架构的日益复杂&#xff0c;如何确保服务的连续性、稳定性和高效性&#xff0c;成为了运维团队亟待解决的核心问题。在此背景下&#xff0c;监控易运维管理软…

使用皮尔逊相关系数矩阵进行特征筛选

皮尔逊相关系数矩阵是一个用于量化多个变量之间线性关系的统计工具。它的每个元素表示两个变量之间的皮尔逊相关系数&#xff0c;取值范围从 -1 到 1&#xff1a; 1 表示完全正相关&#xff1a;当一个变量增加时&#xff0c;另一个变量也会增加。-1 表示完全负相关&#xff1a…

#每日一题#自动化 2024年10月

#每日一题#自动化 2024年10月 1、深拷贝和浅拷贝的区别是什么&#xff1f; 参考答案&#xff1a; 深拷贝是将对象本身复制给另一个对象。这意味着如果对对象的副本进行更改时不会影响原对象。在 Python 中&#xff0c;我们使用 deepcopy&#xff08;&#xff09;函数进行深拷贝…

Debezium和SeaTunnel实现MySQL到Hadoop的实时数据流和全量同步(基于尚硅谷的集群环境)

1、hadoop集群连接本地MySQL 1.1 首先测试集群是否可以ping通本地 虚拟机可以ping通网关&#xff08;192.168.10.2&#xff09;&#xff0c;但不能ping通192.168.10.1&#xff0c;这表明问题可能出在Windows主机的防火墙设置或VMware的网络配置上。 1.1.1 检查Windows防火墙…

个人信息窗口(三)

个人信息窗口&#xff08;三&#xff09; 前言 在上一集我们就可以显示我们就可以全部显示所有的未隐藏的组件了&#xff0c;但是隐藏的组件我们还没有蛆完成&#xff0c;所以我们这一集就需要去做隐藏组件的显示&#xff0c;以及如何切换到隐藏的组件的功能。 需求分析并实…