大模型技术学习过程梳理,零基础入门到精通,收藏这一篇就够了

news2024/11/28 16:05:06

学习是一个从围观到宏观,从宏观到微观的一个过程

今天整体梳理一下大模型技术的框架,争取从大模型所涉及的理论,技术,应用等多个方面对大模型进行梳理。

01

大模型技术梳理

这次梳理大模型不仅仅是大模型本身的技术,而是一个以大模型为核心的涉及到多个方面的理论,技术和应用实践,也可以说是对自己学习大模型技术的总结吧。

话不多表,下面开始进入正题。‍

首先,大家应该明白一件事,大模型技术是人工智能技术的一个分支,是目前主流的一个研究方向,但并不是唯一的方向。‍‍‍‍‍

人工智能技术是一个通过某种技术手段人为的创建一个具有类人智能的系统(软件或硬件),而大模型技术是一种仿造人类学习进化的一种方式,使用深度学习(机器学习)算法模仿人类大脑神经元,来实现智能的一种方式,其主要载体是神经网络。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

神经网络之所以得到发展的原因是因为,基于神经网络架构进行预训练之后,神经网络会产生一种无法解释的_涌现_能力,而这个涌现能力特别像是具有了智能一样。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

_神经网络模型架构_‍‍‍‍‍

既然是模仿神经网络,那么就需要一种深度学习模型来模仿人类大脑神经系统,比如CNN(卷积神经网络),RNN(循环神经网络),以及目前主流的Transformer模型,还有LSTM,ResNet,GANs等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

神经网络的主要结构为一个输入层,一个输出层,以及隐藏层(一个或多个层组成),不同网络层之间使用_全连接_的方式进行连接,每一个圆都代表着一个神经元,如下图所示:‍‍‍‍‍‍‍‍‍‍‍‍‍‍

在神经网络中,除了输入/输出层之外,每一个神经元都有其参数,神经网络的效果就是由这些参数值决定的。

神经网络模型通过一种叫正向传播,损失计算和反向传播的方式来调整神经网络模型中每个神经元的参数。‍‍‍‍‍‍‍‍‍‍‍‍

通过把大量的训练数据输入到神经网络中,让神经网络进行“学习”(不断的调整参数),来达到类智能的能力。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

不同神经网络的架构和实现有所不同,但其核心点都是基于此模型实现的,对想学习神经网络的朋友来说,先学会基础的神经网络架构,然后再针对不同的神经网络模型进行深化是最好的选择。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

目前的大模型主要采用的是预训练的方式来实现智能的,简单来说就是给神经网络模型一堆资料,让它自己学,自己看,自己总结;其中给答案的叫做监督学习,没答案的叫无监督学习。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

然后根据不同的任务需求,又设计出用来解决不同类型任务的神经网络,比如分类任务,图片处理任务,自然语言处理任务等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

至于大模型技术细节方面的东西,就不详细描述了,感兴趣的可以自己学习,比如编码器,损失计算和反向传播怎么实现等。‍‍‍‍

再有,设计并训练一个完整可用的神经网络模型是一个复杂的工程,比如模型的设计,训练数据的收集与处理,损失函数与反向传播算法的设计,模型过拟合,欠拟合等问题。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

而且随着模型规模的增大,模型的训练难度成几何式增长,比如分布式训练,并行计算等问题;以及为了提升大模型的学习效率,节约成本而设计的强化学习,迁移学习等。‍‍‍‍‍

最后,为了使得大模型更像人,也为了实现真正的AGI(通用人工智能),现在多模态大模型大行其道,而多模态大模型技术比传统大模型的技术复杂度又上升了不止一个台阶。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

_基于知识库的向量检索——RAG_‍‍

大模型技术虽然很强大,但其有几个明显的缺点,第一就是知识是有限制的,因为采用的是预训练方式,因此大模型的知识最多只能到训练开始的时间节点,之后产生的新的知识大模型无法获取。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

其次,由于训练大模型的成本问题,导致很多企业无法承担大模型的训练成本,因此只能使用第三方的大模型,但第三方大模型没有在特定领域的数据上进行训练或微调,因此,其表现能力一般。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

这时RAG就出现了,RAG中文是检索增强,是通过外挂知识库的方式,提问大模型之前先从向量数据库中查询数据,然后一起输入到大模型,这样大模型就相当于有了一个外部资料库,遇到不懂的问题就可以通过查资料的方式解决。‍‍‍‍‍‍‍

以目前的技术来说,RAG是大模型技术的一个重要节点,即是大模型能力范围的扩展,也是对大模型短板的补充。‍‍‍‍‍‍‍

微调与提示词工程

我们一般使用的大模型都是预训练模型,也就是用某些数据集训练过的模型;但这些模型一般情况下只会在特定领域表现出色,但如果用来解决自己的实际问题可能就不太好用了。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

这时怎么让预训练模型在其它任务中表现更好就是一个值得思考的问题,而这就是微调与提示词工程存在的意义。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

微调

微调从技术手段上来说和模型训练没有区别,只不过微调是在相似任务的预训练模型的基础之上,通过少量的数据对模型参数进行调整,使得其能够更加适应当前任务的一种方式。由于其成本低,对资金和技术要求要比完全重新设计和训练一款模型要低的多。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

因此,微调存在的意义是为了节约成本和降低门槛,如果资金充足的情况下,根据任务需求设计并训练一款模型是最好的选择,微调是退而求其次的一种方式。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

提示词工程

如果说微调是为了让大模型去适应特定的任务,那么提示词的作用就是怎么更好的使用一个大模型。‍‍‍‍‍‍‍‍‍

根据研究发现,对待同样的问题使用不同的提示词有时会得到完全不一样的效果,因此根据这一现象就提出了提示学习的方法,具体的可以看之前的问题——提示学习。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

用人类来举例就是,假如有人问你吃饭了吗这种简单的问题,你可以下意识的回答,而且可以回答的很好;大模型也是如此,如果你问大模型很简单的问题,它也能回答的比较好。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

但如果问到一些复杂的问题就需要更加准确的描述,比如说根据当前的就业环境,从经济,市场,贸易,国际局势等多个方面来分析一下产生当前情况的原因,以及后续的应对方法。‍‍‍‍‍‍‍‍‍‍‍‍‍

这种复杂的问题,不论是问人还是问大模型,你说的越准确,它回答的才能更好,这就是提示词存在的意义。‍

_智能体Agent_‍‍‍‍‍‍

在前面的描述中,神经网络架构讲的是怎么构建一个大模型,知识库是怎么补充和强化大模型,微调和提示词是怎么更好的使用大模型,那么智能体就是真正的使用大模型,研究大模型的具体应用。‍‍‍‍‍‍‍‍‍‍‍

如果把大模型比做人类的大脑,那么智能体就是大模型的手和脚。‍‍

在此之前使用大模型,我们能够让它回答问题,写文章,生成图片和视频,但这都是大模型天生具备的能力,就类似于人类可以写写画画一样。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

但如果让大模型完成更加复杂的任务,这时就需要借助外部工具,比如外出旅行需要设计旅行路线,定酒店和车票等。‍‍‍‍‍‍

这种任务就完全超出大模型或者人类本身的能力圈,如果想完成这些任务就需要借助外部工具,比如说手机APP。‍‍‍‍‍‍‍‍‍‍‍‍‍

智能体就是大模型+外部工具实现的一种能够独自分析和解决复杂任务的一种载体,利用大模型的独立规划能力,让它根据自己的判断去调用外部工具完成任务。

使用的技术主要有function call,langchain等;如上图所示,大模型使用function call的方式调用外部工具,使用自身能力完成规划和行动,并且由于大模型没有足够的记忆能力,需要增加记忆模块来记录对复杂任务的分析过程。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

目前,大模型解决复杂任务,主要通过思维链(CoT)的方式来实现对复杂问题的分解。‍‍‍‍‍‍‍‍‍‍‍‍‍

langchain是一种人工智能开发框架,它封装了大部分调用大模型的细节,以及其它辅助功能,比如文档的加载,多个大模型的链式调用,提示词模板的封装等,与其类似的还有LlamaIndex等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

_总结_‍‍‍‍‍‍‍

从大的方向上来说,大模型从技术到应用,主要涉及到以上几个大的模块;而每个模块又涉及到大量的技术和细节。比如打造不同任务的神经网络模型,强化学习,迁移学习,知识蒸馏,分布式训练与存储等;以及RAG使用的向量检索,向量数据库,语义理解等,还有复杂任务的思维链(CoT),模型训练使用的LoRa等微调方法。‍‍‍‍‍‍‍‍‍‍‍‍

还有多模态模型中的知识对齐,数据融合等复杂技术。‍‍‍

因此,大模型技术到应用到学习是一个系统性的复杂过程,中间涉及到无数的技术细节和理论,并且还在不断的产生新的技术和理论。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

千里之行,始于足下。‍‍‍‍‍‍‍‍‍‍‍

​ ### 题外话

**
黑客&网络安全如何学习

今天只要你给我的文章点赞,我私藏的网安学习资料一样免费共享给你们,来看看有哪些东西。

1.学习路线图
在这里插入图片描述

攻击和防守要学的东西也不少,具体要学的东西我都写在了上面的路线图,如果你能学完它们,你去就业和接私活完全没有问题。

2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己录的网安视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

内容涵盖了网络安全法学习、网络安全运营等保测评、渗透测试基础、漏洞详解、计算机基础知识等,都是网络安全入门必知必会的学习内容。
在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,按照下面的方法领取即可

在这里插入图片描述

3.技术文档和电子书
技术文档也是我自己整理的,包括我参加大型网安行动、CTF和挖SRC漏洞的经验和技术要点,电子书也有200多本,由于内容的敏感性,我就不一一展示了。
在这里插入图片描述

因篇幅有限,仅展示部分资料,按照下面的方法领取即可
在这里插入图片描述

4.工具包、面试题和源码
“工欲善其事必先利其器”我为大家总结出了最受欢迎的几十款款黑客工具。涉及范围主要集中在 信息收集、Android黑客工具、自动化工具、网络钓鱼等,感兴趣的同学不容错过。在这里插入图片描述

还有我视频里讲的案例源码和对应的工具包,需要的话也可以拿走。

因篇幅有限,仅展示部分资料,按照下面的方法领取即可
在这里插入图片描述

最后就是我这几年整理的网安方面的面试题,如果你是要找网安方面的工作,它们绝对能帮你大忙。

这些题目都是大家在面试深信服、奇安信、腾讯或者其它大厂面试时经常遇到的,如果大家有好的题目或者好的见解欢迎分享。

参考解析:深信服官网、奇安信官网、Freebuf、csdn等

内容特点:条理清晰,含图像化表示更加易懂。

内容概要:包括 内网、操作系统、协议、渗透测试、安服、漏洞、注入、XSS、CSRF、SSRF、文件上传、文件下载、文件包含、XXE、逻辑漏洞、工具、SQLmap、NMAP、BP、MSF…
在这里插入图片描述

因篇幅有限,仅展示部分资料,按照下面的方法领取即可

在这里插入图片描述

————————————————

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2222390.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

接口测试(八)jmeter——参数化(CSV Data Set Config)

一、CSV Data Set Config 需求:批量注册5个用户,从CSV文件导入用户数据 1. 【线程组】–>【添加】–>【配置元件】–>【CSV Data Set Config】 2. 【CSV数据文件设置】设置如下 3. 设置线程数为5 4. 运行后查看响应结果

vue3项目页面实现echarts图表渐变色的动态配置

完整代码可点击vue3项目页面实现echarts图表渐变色的动态配置-星林社区 https://www.jl1mall.com/forum/PostDetail?postId202410151031000091552查看 一、背景 在开发可配置业务平台时,需要实现让用户对项目内echarts图表的动态配置,让用户脱离代码也…

基于Matlab 人脸识别技术

Matlab 人脸识别技术 算法流程: 本系统运用PCA算法来实现人脸特征提取,然后通过计算欧式距离来判别待识别测试人脸,本个系统框架图如下: 图: 人脸识别系统框架图 整个系统的流程是这样的,首先通过图像采…

给哔哩哔哩bilibili电脑版做个手机遥控器

前言 bilibili电脑版可以在电脑屏幕上观看bilibili视频。然而,电脑版的bilibili不能通过手机控制视频翻页和调节音量,这意味着观看视频时需要一直坐在电脑旁边。那么,有没有办法制作一个手机遥控器来控制bilibili电脑版呢? 首先…

基于SpringBoot+Vue+uniapp的时间管理小程序的详细设计和实现(源码+lw+部署文档+讲解等)

详细视频演示 请联系我获取更详细的演示视频 项目运行截图 技术框架 后端采用SpringBoot框架 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的开源框架。它采用约定大于配置的理念,提供了一套默认的配置,让开发者可以更专注于业务逻辑而不…

【文件加密系统】华企盾DSC服务程序启动失败解决办法

问题原因: 1.sa账户密码错误导致连接数据数据库失败无法启动DSC服务 解决方法: 用windows身份验证进入数据库更改sa用户密码:安全性>登录名>sa>右键属性>更改密码 ※如果显示请输入秘钥更改,使用更改完密码的sa账户登…

从0开始深度学习(16)——暂退法(Dropout)

上一章的过拟合是由于数据不足导致的,但如果我们有比特征多得多的样本,深度神经网络也有可能过拟合 1 扰动的稳健性 经典泛化理论认为,为了缩小训练和测试性能之间的差距,应该以简单的模型为目标,即模型以较小的维度的…

机器学习与神经网络:科技的星辰大海

前提 近日,2024年诺贝尔物理学奖颁发给了机器学习与神经网络领域的研究者,这是历史上首次出现这样的情况。这项奖项原本只授予对自然现象和物质的物理学研究作出重大贡献的科学家,如今却将全球范围内对机器学习和神经网络的研究和开发作为了一…

RSocket vs WebSocket:Spring Boot 3.3 中的两大实时通信利器

RSocket vs WebSocket:Spring Boot 3.3 中的两大实时通信利器 随着现代互联网应用的不断发展,实时通信已经成为许多应用程序不可或缺的功能。无论是社交网络、在线游戏还是数据监控系统,实时通信都能提供快速、无缝的信息交换。而实现实时通…

“主升筹码”,底部建仓信号+主升加仓位置,不错过任何行情

使用技巧 指标分为主图和副图 其中,主图主升筹码信号较多,副图的信号较少。这里,我说一个选股思路,就是底部主升筹码共振进场,上升过程中主图信号当作加仓信号。 选股,提供一个主升筹码共振选股&#xff0…

Redis 5.0 安装配置(Windows)

Redis 5.0之后支持Redis Stream等功能 下载地址:Releases tporadowski/redis GitHub 点击运行redis-server.exe 此外:Redis 6.0及以后版本目前都没有Windows版

【越狱插件】内网穿透 frpc、frps插件

内网穿透、frp、frpc、frps https://zhaoboy9692.github.io/repo 越狱源 https://zhaoboy9692.github.io/repo 苦于在ios越狱下没有frp穿透使用 特地开发了的越狱插件 基于最新frp0.48编译 ios14.6测试没问题 有问题及时反馈

ubuntu中使用cmake编译报错No CMAKE_CXX_COMPILER could be found.的解决方法

ubuntu中使用cmake编译报错No CMAKE_CXX_COMPILER could be found.的解决方法 No CMAKE_CXX_COMPILER could be found.Could NOT find CUDA (missing: CUDA_NVCC_EXECUTABLE CUDA_CUDART_LIBRARY)Could not find a package configuration file provided by "OpenCV" …

【SQL|大数据|数据清洗|过滤】where条件中 “ != “ 和 “ NOT IN() ” 对NULL的处理

对数据进行清洗过滤的时候,NULL往往是一个很特殊的存在,对NULL值的存在通常有以下三种方式 1、保留NULL 2、过滤掉NULL 3、将NULL替换为其他符合业务需求的默认常量 下面是一些常用处理NULL的方式: 如下图所示数据源: car_vin&…

android openGL ES详解——缓冲区VBO/VAO/EBO/FBO

目录 一、缓冲区对象概念 二、分类 三、顶点缓冲区对象VBO 1、概念 2、为什么使用VBO 3、如何使用VBO 生成缓冲区对象 绑定缓冲区对象 输入缓冲区数据 更新缓冲区中的数据 删除缓冲区 4、VBO应用 四、顶点数组对象VAO 1、概念 2、为什么使用VAO 3、如何使用VAO…

ai修复照片工具哪个好?在线将模糊图像变清晰就用它

最近想尝试学习一下复古照片的拍摄风格,一波翻箱倒柜的操作翻出了以前家里拍的照片,却发现有些照片出现了氧化褪色,看不清原本图像的情况。 想看清晰一点的照片却找不到原本的底片,没办法再次冲洗新的相纸出来,该怎么…

Generative AI project lifecycle 生成式人工智能项目的全生命周期

这篇文章,你将学习到开发和部署一个由LLM驱动的应用程序所需的技术。在你将了解一个生成式AI项目的全生命周期,这可以帮助指导你完成这项工作。这个框架映射出了从概念到发布所需的任务。这里有一个整体生命周期的图表。我们将逐个阶段地讨论它。 在任何…

一文说明MySQL索引

最近研究了一下关于MySQL索引方面的面试题,以及可能拓展的问题,与大家分享 索引 在MySQL中,常见的索引类型包括以下几种: 普通索引(INDEX) :这是最基本的索引类型,可以包含一个或多…

基于springboot+vue实现的助学兼职系统(源码+L文+ppt)4-092

基于springbootvue实现的助学兼职系统(源码L文ppt)4-092 第4章 系统设计 4.1 总体功能设计 一般学生、招聘公司和管理者都需要登录才能进入助学兼职系统,使用者登录时会在后台判断使用的权限类型,包括一般使用者和管理者,一般使…

探索 Python 中的 XML 转换利器:xml2dict

文章目录 **探索 Python 中的 XML 转换利器:xml2dict**一、背景介绍二、xml2dict 是什么?三、如何安装 xml2dict?四、基本用法五、实际应用场景六、常见问题及解决方案七、总结 探索 Python 中的 XML 转换利器:xml2dict 一、背景…