2023年五一杯数学建模C题双碳目标下低碳建筑研究求解全过程论文及程序

news2025/1/18 18:46:59

2023年五一杯数学建模

C题 双碳目标下低碳建筑研究

原题再现:

  “双碳”即碳达峰与碳中和的简称,我国力争2030年前实现碳达峰,2060年前实现碳中和。“双碳”战略倡导绿色、环保、低碳的生活方式。我国加快降低碳排放步伐,大力推进绿色低碳科技创新,以提高产业和经济的全球竞争力。
  低碳建筑是指在建筑材料与设备制造、施工建造和建筑物使用的整个生命周期内,减少化石能源的使用,提高能效,降低二氧化碳排放量。
请查找相关资料,解决以下问题:
  问题1:现在有一间长4米、宽3米、高3米的单层平顶单体建筑,墙体为砖混结构,厚度30厘米(热导系数 ),屋顶钢筋混凝土浇筑,厚度30厘米(热导系数 ),门窗总面积5平方(热导系数 ),地面为混凝土 (热导系数 )。该建筑物所处地理位置一年(按365天计算)的月平均温度(单位:摄氏度)见下表。
在这里插入图片描述
  假设该建筑物内温度需要一直保持在18-26度,在温度不适宜的时候要通过电来调节温度,消耗一度电相当于0.28千克碳排放。请计算该建筑物通过空调(假设空调制热性能系数COP为3.5,制冷性能系数EER为2.7)调节温度的年碳排放量。(尽量使用本题所给条件计算碳排放,不考虑其他损耗)
  问题2:在居住建筑的整个生命周期 (建造、运行、拆除)中,影响碳排放的因素有很多,如建筑设计标准、气候、建材生产运输、地区差异、建造拆除能耗、装修风格、使用能耗、建筑类型等。请查找、分析资料,建立数学模型,找出与上述因素相关度大且易于量化的指标,基于这些指标对居住建筑整个生命周期的碳排放进行综合评价。
  问题3:在问题2的基础上,分别考虑建筑生命周期三个阶段的碳排放问题,查找相关资料,建立数学模型,对2021年江苏省13个地级市的居住建筑碳排放进行综合评价,并对所建评价模型的有效性进行验证。
  问题4:准确的碳排放预测能够为制定减排政策、优化低碳建筑设计提供重要的参考依据。建立碳排放预测模型,基于江苏省建筑全过程碳排放的历史数据,对2023年江苏省建筑全过程的碳排放量进行预测。
  问题5:请结合前面的讨论给出江苏省建筑碳减排的政策建议。

整体求解过程概述(摘要)

  研究双碳背景下住宅建筑全生命周期碳排放,运用相关分析和主成分分析方法,建立灰色预测模型,旨在促进中国到2030年实现碳峰值,到2060年实现炭中和,促进低碳科技创新,提高人民生活水平。
  针对问题1:本课题研究了通过空调调节建筑物室内温度所产生的碳排放,基于导热系数与面积、厚度、温差的关系,建立了热传导数学模型,计算了不同月份建筑物的热流,得出空调年耗电量为1324.71kW,由于每千瓦的耗电量产生0.28kg的碳,通过空调调温的建筑物年碳排放量为370.9192kg。
  针对问题2:本课题综合评价了影响住宅建筑全生命周期碳排放的因素。施工阶段选择的指标包括降水量、气温、建筑能耗、建筑面积、建筑材料中的生铁和水泥用量、运营阶段的水耗、电耗和天然气耗、拆迁阶段的建筑垃圾。通过相关性分析,确定这10个指标的相关性大于0.3,表明所选指标与住宅建筑生命周期碳排放量具有一定的相关性。然后利用主成分分析方法,得到了10个指标的综合得分,其中建筑面积对住宅建筑碳排放的影响最大,得分为0.136。
  针对第三个问题,在第二个问题的基础上,对江苏省13个地级市的住宅建筑碳排放进行了综合评价。第二个问题是找到12个与碳排放相关的指标,使用Matlab对其进行主成分分析,绘制相关热力学图,并得到综合得分排名:南京碳排放量最多,宿迁最少。找到12个与碳排放相关的指标,使用Matlab对其进行主成分分析,绘制相关热力学图,得到综合得分排序为:南京、苏州、南通、无锡、常州、扬州、徐州、台州、盐城、淮安、连云港、镇江、宿迁,表明南京碳排放量最多,宿迁最少。
  对于问题4:基于江苏省建设全过程碳排放的历史数据,本课题对2023年的碳排放进行了预测。基于江苏省2015-2022年全建设过程碳排放的历史数据,利用灰色预测中的GM(1,1)模型,预测2023年江苏省全建设过程的碳排放量为155.76万吨。
  针对问题5:在分析前四个问题的基础上,从材料、施工、运营、拆迁指标、区域差异和碳排放发展趋势等方面提出了江苏省碳减排的建议,如适当增加墙体厚度、控制建筑面积和提高绿化率、减少建筑垃圾排放、平衡各区域经济发展。

模型假设:

  结合本题的实际,为确保模型求解的准确性和合理性,本文排除一些因素的干扰,提出以下几点假设:
  1.假设计算相关建筑的能耗,门窗面积对其无影响;
  2.假设计算建筑物热损失时不存在极端因素;
  3.在计算调节能耗时,假设空调调节不高于18度或低于26度。

问题分析:

  问题1分析
  问题1需要研究通过空调温度计算建筑物的年碳排放量。首先,由于空调有制冷和制热两种模式,不需要打开空调,十二个月分为三个部分。第一部分是:11月至4月,空调需要开启暖风;第二部分是6月至8月。空调需要开启冷风;第三部分是5月、9月和10月,不需要打开空调。如果高于26度,则需要调整到26度;对于低于18度的情况,需要打结到18度。地面、墙壁和屋顶的厚度为30cm,门窗面积太小。通过建筑物与外界换热功率与导热系数、接触面积、厚度和温差、建筑物传热热流、热流比和热(冷)性能系数的关系,可以计算出空调器的工作功率、空调器的电耗和年碳排放量。

  问题2分析
  问题2需要分析一些指标,以全面评估住宅建筑在其整个生命周期中的碳排放量。建筑物的整个生命周期包括三个阶段:建造、运营和拆除。本文寻找了2018年至2021年中国住宅建筑的年度碳排放量,并选取了10个指标,其中包括建设、运营和拆迁三个阶段的重要影响因素。首先,利用相关性分析来判断碳排放量与这六个指标之间是否存在相关性。然后利用主成分分析方法对数据进行降维,给出不同主成分对应贡献率的权重,最后得出各指标对碳排放的重要性。

  问题3分析
  问题3需要根据对问题2中获得的相关结果的分析,并考虑建筑生命周期三个阶段的相关排放,于2021年对江苏省13个地级市的住宅建筑的碳排放进行综合评估。寻找建筑生命周期三个阶段的相关指标,对相关指标采用主成分分析方法,使用Matlab制作相关热图,观察相关性,并对指标进行降维处理,最终确定主成分,通过贡献率对主成分赋权,得出13个地级市住宅建筑碳排放综合得分,并对其进行评价。

  问题4分析
  问题4要求基于江苏省建设全过程碳排放的历史数据,开展江苏省2023年建设全过程二氧化碳排放预测研究。查阅相关文献,找出江苏省历年住宅建筑碳排放量,利用灰色预测中的GM(1,1)模型对历年住宅建筑物碳排放量进行预测,得到2023年江苏省建筑全过程碳排放量。

  问题5分析
  在前面讨论的基础上,本课题提出了江苏省建筑碳减排的建议。为了实现我国双碳目标下的低碳建筑,应从多方面提出建议。通过问题1、问题2、问题3和问题4,可以分别得出材料对碳排放的影响、不同指标对碳排放量的影响、区域差异对碳排放总量的影响以及历年碳排放的发展趋势。

模型的建立与求解整体论文缩略图

在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
import numpy as np
import matplotlib.pyplot as plt
# 定义居住建筑碳排放模型
def building_carbon_emission_model(weight_coeff, index_values):
    return np.dot(weight_coeff, index_values)
# 设置模拟次数
n_simulations = 10000
# 设置权重系数概率分布范围(示例)
weight_coeff_dist = np.array([[0.2, 0.4],[0.3, 0.5],[0.1, 0.3],[0.2, 0.4]])
# 设置指标取值概率分布范围
index_values_dist = np.array([[10, 50],[20, 100],[5, 25],[10, 50]])
# 初始化存储模型输出的数组
model_outputs = np.zeros(n_simulations)
# 进行蒙特卡洛模拟
for i in range(n_simulations):
    # 对权重系数进行随机抽样
    weight_coeff_sample = np.random.uniform(weight_coeff_dist[:, 0], weight_coeff_dist[:, 1] 
    # 对指标取值进行随机抽样
    index_values_sample = np.random.uniform(index_values_dist[:, 0], index_values_dist[:, 1])
    # 计算模型输出
    model_outputs[i] = building_carbon_emission_model(weight_coeff_sample, index_values_sample)
# 分析模型输出
mean_output = np.mean(model_outputs)
std_output = np.std(model_outputs)
confidence_interval = np.percentile(model_outputs, [2.5, 97.5])
print(f"Mean: {mean_output}")
print(f"Standard Deviation: {std_output}")
print(f"95% Confidence Interval: {confidence_interval}")
# 绘制模型输出的直方图
plt.hist(model_outputs, bins=50)
plt.xlabel("Carbon Emission")
plt.ylabel("Frequency")
plt.show()
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.arima.model import ARIMA
from sklearn.metrics import mean_squared_error
import itertools
 # ACF和PACF图
plot_acf(df['log_emission_diff'])
plt.title('ACF')
plot_pacf(df['log_emission_diff'])
plt.title('PACF')
# 确定参数范围
p_range = range(0, 3)
d_range = range(0, 2)
q_range = range(0, 3)# 计算所有参数组合的AIC
best_aic = float('inf')
best_order = None
for p, d, q in itertools.product(p_range, d_range, q_range):
    if p == 0 and d == 0 and q == 0:
        continue
    try:
        model = ARIMA(df['log_emission'], order=(p, d, q))
        results = model.fit()
        if results.aic < best_aic:
            best_aic = results.aic
            best_order = (p, d, q)
    except:
        continue
print(f'Best ARIMA parameters: {best_order}, AIC: {best_aic}')
clear; clc
year = 2015:1:2022; %年份
x0 = [102.3 108.7 115.2 121.6 128.1 134.5 140.96 147.41] ;%原始数据序列
n = length(x0); 
year = year' ;
x0 = x0' ;
 
%画出时序图,观察是否是以年份为度量的非负数据
figure(1) ;
plot(year, x0, 'o-') ;
grid on ;
set(gca,'xtick',year(1:1:end)) ; %设置x轴的间隔为1
xlabel('年份');  ylabel('碳排放量');
 
%GM模型适用于数据较短的非负序列,所以要进行非负检验
ERROR = 0;  % 建立一个错误指标,一旦出错就指定为1
% 判断是否有负数元素,当然数据量要4~10期才考虑使用GM
if sum(x0<0) > 0  
    disp('原始数据有负值,不能使用GM')
    ERROR = 1;
end
 
%进行准指数规律检验和进行级比检验
if ERROR == 0   
    disp('------------------------------------------------------------')
    disp('准指数规律检验')
    x1 = cumsum(x0);   % 一次累加
    rho = x0(2:end) ./ x1(1:end-1) ;   % 计算光滑度rho(k) = x0(k)/x1(k-1)
    
    % 画出光滑度的图形,并画上0.5的直线,表示临界值
    figure(2)

plot(year(2:end),rho,'o-',[year(2),year(end)],[0.5,0.5],'-'); grid on;
    text(year(end-1)+0.2,0.55,'临界线')   % 在坐标(year(end-1)+0.2,0.55)上添加文本
    set(gca,'xtick',year(2:1:end))  % 设置x轴横坐标的间隔为1
    xlabel('年份');  ylabel('原始数据的光滑度');  % 给坐标轴加上标签
    
 
    disp(strcat('指标1:光滑比小于0.5的数据占比为',num2str(100*sum(rho<0.5)/(n-1)),'%'))
    disp(strcat('指标2:除去前两个时期外,光滑比小于0.5的数据占比为',num2str(100*sum(rho(3:end)<0.5)/(n-3)),'%'))
    disp('参考标准:指标1一般要大于60%, 指标2要大于90%,你认为本例数据可以通过检验吗?')
    
    flag = 1 ;
    end
    for k = 2 : n
    lamda(k) = x0(k-1) / x0(k) ;
    if (lamda(k) < exp(-2 / (n+1)) || lamda(k) > exp(2 / (n+1)))
        disp('不通过级比检验!!!') ;
        flag = 0 ;
    end
    end
    if flag == 1
        disp('通过级比检验!!!') ;
    end
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2221713.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

工业一体机为软件开发商提供稳定可靠的硬件平台

在当今数字化、智能化的工业时代&#xff0c;软件在工业生产和管理中的作用日益凸显。而软件的高效运行离不开稳定可靠的硬件平台&#xff0c;工业一体机正是这样一个为软件开发商提供坚实支撑的关键设备。 工业一体机的铝合金工艺和无风扇设计为软件运行创造了良好的散热环境。…

Apache Hive 帮助文档

Apache Hive 帮助文档 由于教学需要&#xff0c;本文主要介绍 hive 的 基础 和 哪里可以看帮助文档的介绍&#xff0c; 是一篇对帮助文档整理的文章 官方网站 文章目录 Apache Hive 帮助文档什么是 Hive&#xff1f;Hive 下载Hive帮助文档 什么是 Hive&#xff1f; Apache Hi…

ComfyUI 即将发布桌面版,更新内容前瞻

就在昨天&#xff0c;ComfyUI 宣布即将发布桌面版&#xff0c;一下是官方的介绍 官网发布页&#xff1a;https://blog.comfy.org/comfyui-v1-release/ 完全打包的桌面版本 在过去的两个月里&#xff0c;我们一直在努力为 ComfyUI 提供无缝的桌面体验。我们的目标是确保非技术…

Python教程:制作贪吃蛇游戏存以exe文件运行

Python&#xff0c;作为一种解释型、面向对象、动态数据类型的高级程序设计语言&#xff0c;其简洁易懂的语法和丰富的库使得它成为开发小游戏的理想选择。 下面&#xff0c;我们就来一步步教大家如何用Python制作一个贪食蛇小游戏&#xff0c;并将其打包成exe程序&#xff0c…

活体人脸识别技术总结及实践

文章目录 1、背景2、人脸反伪装技术2.1 活体人脸识别常见模式2.2 学术上反伪装研究 3、工程实现3.1 Silent-Face3.2 Silent-Face模型转rknn3.3 Silent-Face模型的限制 1、背景 1.1 什么是活体检测&#xff1f; 在人脸识别之前&#xff0c;先判断一下屏幕前摄像头捕捉到的人脸是…

【Golang】Gin框架中如何定义路由

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

计算机网络:数据链路层 —— 无线局域网 WLAN

文章目录 局域网无线局域网 WLAN802.11 无线局域网802.11无线局域网的组成WLAN 的组成有固定基础设施的802.11无线局域网漫游服务 无固定基础设施的802.11无线局域网 802.11无线局域网的物理层802.11无线局域网的数据链路层不使用碰撞检测 CD 的原因CSMA/CA 协议CSMA/CA 协议的…

新探索研究生英语读写教程pdf答案(基础级)

《新探索研究生英语读写教程》的设计和编写充分考虑国内研究生人才培养目标和研究生公共英语的教学需求&#xff0c; 教学内容符合研究生认知水平&#xff0c; 学术特征突出&#xff1b;教学设计紧密围绕学术阅读、学术写作和学术研究能力培养&#xff1b;教学资源立体多元&…

阀井燃气监控仪-燃气阀门井数据远程监测设备-旭华智能

在城市的地下&#xff0c;有无数条看不见的生命线——那是为千家万户输送温暖与光明的燃气管线。然而&#xff0c;在这复杂的网络之下&#xff0c;隐藏着不可预知的风险。为了保障每一位市民的安全&#xff0c;我们推出了一款革命性的产品——“智安卫士”可燃气体监测终端。 随…

Python字符串处理深度解析:高级操作技巧、性能优化与实用案例全解

文章目录 前言&#x1f497;一、字符串的定义与特点&#x1f498;1.1 字符串的定义1.1.1 单引号和双引号的字符串定义&#xff1a;1.1.2 三引号定义多行字符串&#xff1a; &#x1f498;1.2 特点&#xff1a;&#x1f498;1.3 字符串是序列小结&#xff1a; &#x1f497;二、…

软件设计模式------抽象工厂模式

抽象工厂模式&#xff08;Abstract Factory Pattern&#xff09;&#xff0c;又称Kit模式&#xff0c;属于对象创建型模式。 一&#xff1a;先理解两个概念&#xff1a; &#xff08;1&#xff09;产品等级结构&#xff1a; 即产品的继承结构。 通俗来讲&#xff0c;就是不同品…

【计算机网络 - 基础问题】每日 3 题(四十九)

✍个人博客&#xff1a;https://blog.csdn.net/Newin2020?typeblog &#x1f4e3;专栏地址&#xff1a;http://t.csdnimg.cn/fYaBd &#x1f4da;专栏简介&#xff1a;在这个专栏中&#xff0c;我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话&#xff0c;欢迎点赞…

如何通过智能T0算法增加持仓收益?

第一&#xff1a;什么是智能T0算法&#xff1f;什么是智能T0算法&#xff1f;简单来说&#xff0c;就是基于用户原有的股票持仓&#xff0c;针对同一标的&#xff0c;配合智能T0算法&#xff0c;每天全自动操作&#xff0c;高抛低吸&#xff0c;抓取行情波动价差。操作后每日持…

MySQL的安装(windows,Centos,ubuntu)

目录 在Windows下安装MySQL数据库 在Centos下安装MySQL数据库 在ubuntu下安装MySQL数据库 在Windows下安装MySQL数据库 安装程序的下载地址: https://dev.mysql.com/downloads/ 点击之后就会出现下面的页面 接下来根据安装提示进行操作即可 在Centos下安装MySQL数据库 1.确认…

VMware中Ubuntu安装

VMware官网&#xff1a;https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion 先在官网下载VMware&#xff0c;一直根据默认点下一步就好了&#xff0c;记得更改安装地址哦&#xff0c;否则默认下在C盘里。 先下载好Ubuntu映像文件&#xff1a;https://…

No.18 笔记 | XXE(XML 外部实体注入)漏洞原理、分类、利用及防御整理

一、XXE 漏洞概述 &#xff08;一&#xff09;定义 XXE&#xff08;XML 外部实体注入&#xff09;漏洞源于 XML 解析器对外部实体的不当处理&#xff0c;攻击者借此注入恶意 XML 实体&#xff0c;可实现敏感文件读取、远程命令执行和内网渗透等危险操作。 &#xff08;二&am…

[含文档+PPT+源码等]精品基于Nodejs实现的水果批发市场管理系统的设计与实现

基于Node.js实现的水果批发市场管理系统的设计与实现背景&#xff0c;可以从以下几个方面进行阐述&#xff1a; 一、行业背景与市场需求 水果批发市场的重要性&#xff1a; 水果批发市场作为农产品流通的重要环节&#xff0c;承载着从生产者到消费者之间的桥梁作用。它的运营效…

传统园区与智慧园区:现代化发展的差异和优势

传统园区和智慧园区代表着城市发展不同阶段的产物&#xff0c;两者在功能、管理、环境等多个方面存在显著差异。通过对传统园区和智慧园区进行对比&#xff0c;可以清晰地看到智慧园区的诸多优势所在。 1. 功能对比&#xff1a; 传统园区通常以简单的生产、办公和商业为主要功…

1.深入理解MySQL索引底层数据结构与算法

文章目录 索引的概念数据结构二叉树红黑树B-B两者的区别 Hash 引擎数据所在位置对应关系MyISAMInnoDB 索引主键聚集索引非聚集索引联合索引 如有写的不对的请指正。 索引的概念 索引是帮助MySQL高效获取数据的排好序的数据结构 数据结构 网址&#xff1a; https://www.cs.us…

Kafka-设计思想-2

一、消息传递语义 现在我们对生产者和消费者的工作方式有了一些了解&#xff0c;让我们讨论一下Kafka在生产者和消费者之间提供的语义保证。 1、最多发送一次&#xff1a;会造成数据丢失 2、至少发送一次&#xff1a;会造成数据重复消费 3、只发送一次&#xff1a;我们想要的效…