2009年国赛高教杯数学建模A题制动器试验台的控制方法分析解题全过程文档及程序

news2024/11/26 11:34:37

2009年国赛高教杯数学建模

A题 制动器试验台的控制方法分析

  汽车的行车制动器(以下简称制动器)联接在车轮上,它的作用是在行驶时使车辆减速或者停止。制动器的设计是车辆设计中最重要的环节之一,直接影响着人身和车辆的安全。为了检验设计的优劣,必须进行相应的测试。在道路上测试实际车辆制动器的过程称为路试,其方法为:车辆在指定路面上加速到指定的速度;断开发动机的输出,让车辆依惯性继续运动;以恒定的力踏下制动踏板,使车辆完全停止下来或车速降到某数值以下;在这一过程中,检测制动减速度等指标。假设路试时轮胎与地面的摩擦力为无穷大,因此轮胎与地面无滑动。
  为了检测制动器的综合性能,需要在各种不同情况下进行大量路试。但是,车辆设计阶段无法路试,只能在专门的制动器试验台上对所设计的路试进行模拟试验。模拟试验的原则是试验台上制动器的制动过程与路试车辆上制动器的制动过程尽可能一致。通常试验台仅安装、试验单轮制动器,而不是同时试验全车所有车轮的制动器。制动器试验台一般由安装了飞轮组的主轴、驱动主轴旋转的电动机、底座、施加制动的辅助装置以及测量和控制系统等组成。被试验的制动器安装在主轴的一端,当制动器工作时会使主轴减速。试验台工作时,电动机拖动主轴和飞轮旋转,达到与设定的车速相当的转速(模拟实验中,可认为主轴的角速度与车轮的角速度始终一致)后电动机断电同时施加制动,当满足设定的结束条件时就称为完成一次制动。
  路试车辆的指定车轮在制动时承受载荷。将这个载荷在车辆平动时具有的能量(忽略车轮自身转动具有的能量)等效地转化为试验台上飞轮和主轴等机构转动时具有的能量,与此能量相应的转动惯量(以下转动惯量简称为惯量)在本题中称为等效的转动惯量。试验台上的主轴等不可拆卸机构的惯量称为基础惯量。飞轮组由若干个飞轮组成,使用时根据需要选择几个飞轮固定到主轴上,这些飞轮的惯量之和再加上基础惯量称为机械惯量。例如,假设有4个飞轮,其单个惯量分别是:10、20、40、80 kg·m2,基础惯量为10 kg·m2,则可以组成10,20,30,…,160 kg·m2的16种数值的机械惯量。但对于等效的转动惯量为45.7 kg·m2的情况,就不能精确地用机械惯量模拟试验。这个问题的一种解决方法是:把机械惯量设定为40 kg·m2,然后在制动过程中,让电动机在一定规律的电流控制下参与工作,补偿由于机械惯量不足而缺少的能量,从而满足模拟试验的原则。
  一般假设试验台采用的电动机的驱动电流与其产生的扭矩成正比(本题中比例系数取为1.5 A/N·m);且试验台工作时主轴的瞬时转速与瞬时扭矩是可观测的离散量。
  由于制动器性能的复杂性,电动机驱动电流与时间之间的精确关系是很难得到的。工程实际中常用的计算机控制方法是:把整个制动时间离散化为许多小的时间段,比如10 ms为一段,然后根据前面时间段观测到的瞬时转速与/或瞬时扭矩,设计出本时段驱动电流的值,这个过程逐次进行,直至完成制动。
  评价控制方法优劣的一个重要数量指标是能量误差的大小,本题中的能量误差是指所设计的路试时的制动器与相对应的实验台上制动器在制动过程中消耗的能量之差。通常不考虑观测误差、随机误差和连续问题离散化所产生的误差。
  现在要求你们解答以下问题:
  1. 设车辆单个前轮的滚动半径为0.286 m,制动时承受的载荷为6230 N,求等效的转动惯量。
  2. 飞轮组由3个外直径1 m、内直径0.2 m的环形钢制飞轮组成,厚度分别为0.0392 m、0.0784 m、0.1568 m,钢材密度为7810 kg/m3,基础惯量为10 kg·m2,问可以组成哪些机械惯量?设电动机能补偿的能量相应的惯量的范围为 [-30, 30] kg·m2,对于问题1中得到的等效的转动惯量,需要用电动机补偿多大的惯量?
  3. 建立电动机驱动电流依赖于可观测量的数学模型。
  在问题1和问题2的条件下,假设制动减速度为常数,初始速度为50 km/h,制动5.0秒后车速为零,计算驱动电流。
  4. 对于与所设计的路试等效的转动惯量为48 kg·m2,机械惯量为35 kg·m2,主轴初转速为514转/分钟,末转速为257转/分钟,时间步长为10 ms的情况,用某种控制方法试验得到的数据见附表。请对该方法执行的结果进行评价。
  5. 按照第3问导出的数学模型,给出根据前一个时间段观测到的瞬时转速与/或瞬时扭矩,设计本时间段电流值的计算机控制方法,并对该方法进行评价。
  6. 第5问给出的控制方法是否有不足之处?如果有,请重新设计一个尽量完善的计算机控制方法,并作评价。

整体求解过程概述(摘要)

  本文旨在研究制动器试验台的控制问题,通过对试验台模拟试验的分析推导,建立了驱动电流依赖于可观测量的数学模型,给出控制驱动电流的方法,并对所给方法进行评价和改进。
  问题一,根据题述,把载荷在车辆平动时具有的能量等效地转化为试验台上飞轮和主轴等机构转动时具有的能量,结合刚体力学知识,求得问题一中等效的转动惯量为52 kg J m;
  问题二,经过计算可知,能组成八种机械惯量,分别为10、40、70、100、130、160、190、220 kg J m,对应于问题一中得到的等效转动惯量,需要用电动机补偿惯量为12kg J m或J gJm;
  问题三,本文依据能量守恒定律对制动过程进行分析,建立了一个理想条件下的基本模型,并利用该模型求出题述条件下的驱动电流为174.8252A或J,两个取值分别对应于问题二求得的两个补偿惯量值;
  问题四,能量误差的大小是评价控制方法优劣的一个重要指标,利用所给数据求出能量误差为2.9461J10 J,相对能量误差为5.64%,可以看出该方法误差较大;
  问题五,我们利用第三问导出的基本模型,推出了依据前一时间段观测到的瞬时扭矩设计本时间段电流值的计算机控制方法,经过计算机模拟分析发现该方法具有明显的时延误差,其相对能量误差为0.219%,为了减弱该误差的影响,我们引入反馈机制加以改进,使相对能量误差降低到了0.089%;
  问题六,经过对问题五中的方法分析发现,反馈虽然可以在一定程度上减弱时延误差,但却无法从根本上解决该方法内在缺陷,因此本文给出了基于Laplace变换设计的新方法。此方法虽然也用前一时间段的数据估计此时间段的电流值,但是,经过严格证明与计算机模拟发现:在模型阶数N足够大的情况下,能量误差近似为零!
  最后,我们给出了多目标规划模型和基于非线性方程的迭代求解模型这两个拓展模型,并对各模型的优缺点进行了分析。

模型假设:

  1.路试时轮胎与地面的摩擦力为无穷大,因此轮胎与地面无滑动;
  2.模拟实验中,主轴的角速度与车轮的角速度始终一致;
  3.车轮及主轴的角速度连续变化;
  4.试验台采用的电动机的驱动电流与其产生的扭矩成正比;
  5.不考虑观测误差、随机误差和连续问题离散化所产生的误差。

问题分析:

  制动器的设计是车辆设计中最重要的环节之一,直接影响着人身和车辆的安全,而制动器性能的测试是为了检验设计优劣的不可或缺的一部分。通过分析发现,问题的核心在于:如何使得制动过程中电动机尽量精确地补偿由于机械惯量不足而缺少的能量,以满足模拟实验的原则,也就是解决如何控制电动机的驱动电流问题。
  对于问题一和问题二,根据题目中所给条件利用刚体力学知识直接求解即可。对于问题三,利用能的转化与守恒定律建立模型求解,然后利用该模型求得所给具体情况下的驱动电流值。评价控制方法优劣的一个重要指标是能量误差的大小,据此可以对问题四所述控制方法得到的结果进行评价。对于问题五,可以依据问题三所建的模型,给出依据前一个时间段观测到的瞬时转速与/或瞬时扭矩,设计本时间段电流值的计算机控制方法,并进行计算机模拟,可利用与解决问题四同样的方法进行评价。对于问题六,应该在问题五所给控制方法的基础上进一步分析,给出一个尽量完善的计算机控制方法。

模型的建立与求解整体论文缩略图

在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:

function y=fun1(r1,r2,d,p) 
s=pi*(r1^2-r2^2); 
v=s*d; 
m=v*p; 
gl=m*(r1^2+r2^2)/2; 
y=gl; 
clear;clc; 
J=35;tt=0.01; 
k=1.5;%电动机驱动电流与其产生的扭矩比例系数 
A=xlsread('F:\Documents 
and 
\shumo\A2009data.xls'); 
a=A(:,1);%扭矩 
b=A(:,2);%转速 
c=A(:,3);%时间 
d=b.*(2*pi/60);%角速度 
e=a.*d; 
for i=1:467 
Settings\Administrator\
 I(i)=k*(a(i)-J*(d(i+1)-d(i))/tt); 
end 
cc=c(1:467); 
figure 
plot(c,e); 
title('能量分布图'); 
f=e.*0.01; 
g=sum(f);%能量综合 
figure 
plot(c,a); 
title('扭矩变化函数'); 
figure 
plot(c,d); 
title('角速度变化函数'); 
figure 
plot(cc,I); 
title('驱动电流随时间变化函数');
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2219755.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分享一个IDEA里面的Debug调试设置

1.问题来源 其实我们在这个IDEA里面的这个进行调试的时候,这个是只有步入,出去的选项的; 之前学习这个sort的底层源码的时候,进不去,我们是设置了一个取消java*什么的选项,然后使用这个step into就可以进…

计算机网络易混知识点

1.以太网采用曼彻斯特编码;以太网帧最短为64B,其中14个B首部(目的MAC-6B,源MAC-6B,类型-2B)4B尾部 2.OSI协议中,每一层为上一层提供服务,为下一层提供接口 3.帧序号的比特数表示的是发送窗口的大小&#…

java逻辑运算符 C语言结构体定义

1. public static void main(String[] args) {System.out.println(true&true);//&两者均为true才trueSystem.out.println(false|false);// | 两边都是false才是falseSystem.out.println(true^false);//^ 相同为false,不同为trueSystem.out.println(!false)…

(38)MATLAB分析带噪信号的频谱

文章目录 前言一、MATLAB仿真代码二、仿真结果画图总结 前言 本文给出带噪信号的时域和频域分析,指出频域分析在处理带噪信号时的优势。 首先使用MATLAB生成一段信号,并在信号上叠加高斯白噪声得到带噪信号,然后对带噪信号对其进行FFT变换&…

Java面试指南:Java基础介绍

这是《Java面试指南》系列的第1篇,本篇主要是介绍Java的一些基础内容: 1、Java语言的起源 2、Java EE、Java SE、Java ME介绍 3、Java语言的特点 4、Java和C的区别和联系? 5、面向对象和面向过程的比较 6、Java面向对象的三大特性&#xff1a…

云计算-----单机LNMP结构WordPress网站

LNMP结构 博客网站 day1 小伙伴们,LNMP结构在第一二阶段浅浅的学习过,这里我们可以离线部署该结构。L指(虚拟机)服务器,nginx(前端代理服务器)mysql数据库,最后基于php建设动态…

AlDente Pro for Mac电脑 充电限制保护工具 安装教程【简单,轻松上手】

Mac分享吧 文章目录 AlDente Pro for Mac 充电限制保护工具 安装完成,软件打开效果一、AlDente Pro for Mac 充电限制保护工具 Mac电脑版——v1.28.41️⃣:下载软件2️⃣:安装软件,将安装包从左侧拖入右侧文件夹中,等…

Halcon实战——基于NCC模板匹配的芯片检测(附源码)

Halcon实战——基于NCC模板匹配的芯片检测(附源码) 关于作者 作者:小白熊 作者简介:精通python、matlab、c#语言,擅长机器学习,深度学习,机器视觉,目标检测,图像分类&am…

Java | Leetcode Java题解之第493题翻转对

题目&#xff1a; 题解&#xff1a; class Solution {public int reversePairs(int[] nums) {Set<Long> allNumbers new TreeSet<Long>();for (int x : nums) {allNumbers.add((long) x);allNumbers.add((long) x * 2);}// 利用哈希表进行离散化Map<Long, Int…

linux 效率化 - 输入法 - fcitx5

安装 Fcitx5 1. 卸载 ibus 框架 由于 ibus 和 fcitx 可能会冲突&#xff0c;先卸载 ibus&#xff08;暂未确认原因&#xff09; sudo apt remove --purge ibus2. 安装 fcitx5 输入法框架 sudo apt update sudo apt install fcitx5 fcitx5-chinese-addons fcitx5-frontend-gtk…

深入理解Nest的REQUEST范围和TRANSIENT范围

深入理解Nest的REQUEST范围和TRANSIENT范围 单例模式REQUEST范围控制器的REQUEST范围REQUEST范围的冒泡特性场景 TRANSIENT范围例外场景 总结 单例模式 单例模式是指在整个程序执行期间&#xff0c;程序内的类都会实例化&#xff0c;且与应用程序生命周期直接相关&#xff0c;…

javax.el.PropertyNotFoundException: Property ‘XXX‘ not found on type XXX(类的路径)

捣鼓了半小时的bug 在网上找了好多方案,都没有解决 其中一个佬的解决方案:异常&#xff1a;javax.el.PropertyNotFoundException: Property xxx not found on type java.lang.String-CSDN博客 但是还是没有解决我的问题 最终解决方法,在jsp文件头部导入了类包(第三行我导入…

【Nginx系列】Nginx配置超时时间

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

MySQL日期类型选择建议

我们平时开发中不可避免的就是要存储时间&#xff0c;比如我们要记录操作表中这条记录的时间、记录转账的交易时间、记录出发时间、用户下单时间等等。你会发现时间这个东西与我们开发的联系还是非常紧密的&#xff0c;用的好与不好会给我们的业务甚至功能带来很大的影响。所以…

深入拆解TomcatJetty(二)

深入拆解Tomcat&Jetty&#xff08;二&#xff09; 专栏地址&#xff1a;https://time.geekbang.org/column/intro/100027701 1、Tomcat支持的IO模型和应用层协议 IO模型&#xff1a; NIO&#xff1a;非阻塞 I/O&#xff0c;采用 Java NIO 类库实现。NIO2&#xff1a;异…

Cyber RT 之 Timer Component 实践(apollo 9.0)

实验内容 Component 是 Cyber RT 提供的用来构建功能模块的基础类&#xff0c;Component 有两种类型&#xff0c;分别为 Component 和 TimerComponent。 相较于 Component&#xff0c;TimerComponent 不提供消息融合&#xff0c;也不由消息触发运行&#xff0c;而是由系统定时…

UE5 gameplay学习 蓝图0 level blueprint

首先在左上角这个位置可以创建一个这个蓝图 我理解这个蓝图适合做全局事件规划啥的 在场景选中一个物体&#xff0c;右侧面板拿到他&#xff0c;直接拖入蓝图&#xff0c;就能操作他了 这里获取到了这个物体&#xff0c;在gamebegin的时候把Z加了500 执行播放的时候能看见他从…

Windows API 一 ----起步

目录 1.介绍主函数入口参数。 2. 简单介绍 Windows.h 这个头文件 小结&#xff0c;也聊一聊 1.介绍主函数入口参数。 第一个参数: HINSTANCE 类型的 参数&#xff0c; 称为“实例句柄“&#xff0c;这个参数唯一标志了我们写的这个程序。 第二个参数&#xff1a; HINSTANCE…

poisson过程——随机模拟(Python和R实现)

Python实现 exponential()使用&#xff0c;自动poisson过程实现。 import numpy as np import matplotlib.pyplot as plt# Parameters lambda_rate 5 # rate parameter (events per time unit) T 10 # total time# Generate Poisson process times np.random.exponential(…

k8s系列-Rancher 上操作的k8s容器网络配置总结

Rancher 上操作的k8s容器网络配置总结 要在 Rancher 中配置Spring Boot 应用 ykhd-zhjgyw-xpwfxfjfl 服务&#xff0c;正确的配置方式如下&#xff1a; 1. 应用程序监听端口 在 application.yaml 文件中&#xff0c;配置的应用监听端口是 10001&#xff0c;并且应用的上下文…