DeepFM模型代码详解

news2024/12/23 4:37:10

直到看到这篇文章,我才搞明白类别特征怎么做lookup的,也看明白了代码逻辑。如果你看完没懂,私信留下wx,给你讲懂。

1、Deepfm 的原理,DeepFM 是一个模型还是代表了一类模型,DeepFM 对 FM 做了什么样的改进,FM 的公式如何化简并求解梯度(滴滴) 2、FM、DeepFM 介绍一下(猫眼) 3、DeepFm 模型介绍一下(一点资讯) 4、DeepFM 介绍下 & FM 推导(一点资讯)

1、DeepFM 原理回顾

先来回顾一下 DeepFM 的模型结构:

DeepFM 包含两部分:因子分解机部分与神经网络部分,分别负责低阶特征的提取和高阶特征的提取。这两部分共享同样的嵌入层输入。DeepFM 的预测结果可以写为:

1.1 嵌入层

嵌入层 (embedding layer) 的结构如上图所示。通过嵌入层,尽管不同 field 的长度不同(不同离散变量的取值个数可能不同),但是 embedding 之后向量的长度均为 K(我们提前设定好的 embedding-size)。通过代码可以发现,在得到 embedding 之后,我们还将对应的特征值乘到了 embedding 上,这主要是由于 fm 部分和 dnn 部分共享嵌入层作为输入,而 fm 中的二次项如下:

1.2 FM 部分

FM 部分的详细结构如下:

FM 部分是一个因子分解机。关于因子分解机可以参阅文章 [Rendle, 2010] Steffen Rendle. Factorization machines. In ICDM, 2010.。因为引入了隐变量的原因,对于几乎不出现或者很少出现的隐变量,FM 也可以很好的学习。

FM 的输出公式为:

1.3 深度部分

深度部分是一个多层前馈神经网络。我们这里不再赘述。

1.4 与其他神经网络的关系

1.5 模型效果

2、代码实现

2.1 Embedding 介绍

DeepFM 中,很重要的一项就是 embedding 操作,所以我们先来看看什么是 embedding,可以简单的理解为,将一个特征转换为一个向量。在推荐系统当中,我们经常会遇到离散变量,如 userid、itemid。对于离散变量,我们一般的做法是将其转换为 one-hot,但对于 itemid 这种离散变量,转换成 one-hot 之后维度非常高,但里面只有一个是 1,其余都为 0。这种情况下,我们的通常做法就是将其转换为 embedding。

embedding 的过程是什么样子的呢?它其实就是一层全连接的神经网络,如下图所示:

假设一个离散变量共有 5 个取值,也就是说 one-hot 之后会变成 5 维,我们想将其转换为 embedding 表示,其实就是接入了一层全连接神经网络。由于只有一个位置是 1,其余位置是 0,因此得到的 embedding 就是与其相连的图中红线上的权重。

2.2 tf.nn.embedding_lookup 函数介绍

在 tf1.x 中,我们使用 embedding_lookup 函数来实现 embedding,代码如下:

#embedding
embedding = tf.constant(
        [[0.21,0.41,0.51,0.11]],
        [0.22,0.42,0.52,0.12],
        [0.23,0.43,0.53,0.13],
        [0.24,0.44,0.54,0.14]],dtype=tf.float32)

feature_batch = tf.constant([2,3,1,0])

get_embedding1 = tf.nn.embedding_lookup(embedding,feature_batch)

在 embedding_lookup 中,第一个参数相当于一个二维的词表,并根据第二个参数中指定的索引,去词表中寻找并返回对应的行。上面的过程为:

注意这里的维度的变化,假设我们的 feature_batch 是 1 维的 tensor,长度为 4,而 embedding 的长度为 4,那么得到的结果是 4 * 4 的,同理,假设 feature_batch 是 2 *4 的,embedding_lookup 后的结果是 2 * 4 * 4。每一个索引返回 embedding table 中的一行,自然维度会 + 1。

上文说过,embedding 层其实是一个全连接神经网络层,那么其过程等价于:

可以得到下面的代码:

embedding = tf.constant(
    [
        [0.21,0.41,0.51,0.11],
        [0.22,0.42,0.52,0.12],
        [0.23,0.43,0.53,0.13],
        [0.24,0.44,0.54,0.14]
    ],dtype=tf.float32)

feature_batch = tf.constant([2,3,1,0])
feature_batch_one_hot = tf.one_hot(feature_batch,depth=4)
get_embedding2 = tf.matmul(feature_batch_one_hot,embedding)

二者是否一致呢?我们通过代码来验证一下:

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    embedding1,embedding2 = sess.run([get_embedding1,get_embedding2])
    print(embedding1)
    print(embedding2)

得到的结果为:

二者得到的结果是一致的。

因此,使用 embedding_lookup 的话,我们不需要将数据转换为 one-hot 形式,只需要传入对应的 feature 的 index 即可。

2.3 数据处理

接下来进入代码实战部分。

首先我们来看看数据处理部分,通过刚才的讲解,想要给每一个特征对应一个 k 维的 embedding,如果我们使用 embedding_lookup 的话,需要得到连续变量或者离散变量对应的特征索引 feature index。听起来好像有点抽象,咱们还是举个简单的例子:

这里有三组特征,或者说 3 个 field 的特征,分别是性别、星期几、职业。对应的特征数量分别为 2、7、2。我们总的特征数量 feature-size 为 2 + 7 + 2=11。如果转换为 one-hot 的话,每一个取值都会对应一个特征索引 feature-index。

这样,对于一个实例男/二/学生来说,将其转换为对应的特征索引即为 0、3、9。在得到特征索引之后,就可以通过 embedding_lookup 来获取对应特征的 embedding。

当然,上面的例子中我们只展示了三个离散变量,对于连续变量,我们也会给它一个对应的特征索引,如:

可以看到,此时共有 5 个 field,一个连续特征就对应一个 field。

但是在 FM 的公式中,不光是 embedding 的内积,特征取值也同样需要。对于离散变量来说,特征取值就是 1,对于连续变量来说,特征取值是其本身,因此,我们想要得到的数据格式如下:

定好了目标之后,咱们就开始实现代码。先看下对应的数据集:

import pandas as pd

TRAIN_FILE = "data/train.csv"
TEST_FILE = "data/test.csv"

NUMERIC_COLS = [
    "ps_reg_01", "ps_reg_02", "ps_reg_03",
    "ps_car_12", "ps_car_13", "ps_car_14", "ps_car_15"
]

IGNORE_COLS = [
    "id", "target",
    "ps_calc_01", "ps_calc_02", "ps_calc_03", "ps_calc_04",
    "ps_calc_05", "ps_calc_06", "ps_calc_07", "ps_calc_08",
    "ps_calc_09", "ps_calc_10", "ps_calc_11", "ps_calc_12",
    "ps_calc_13", "ps_calc_14",
    "ps_calc_15_bin", "ps_calc_16_bin", "ps_calc_17_bin",
    "ps_calc_18_bin", "ps_calc_19_bin", "ps_calc_20_bin"
]

dfTrain = pd.read_csv(TRAIN_FILE)
dfTest = pd.read_csv(TEST_FILE)
print(dfTrain.head(10))

数据集如下:

我们定义了一些不考虑的变量列、一些连续变量列,剩下的就是离散变量列,接下来,想要得到一个 feature-map。这个 featrue-map 定义了如何将变量的不同取值转换为其对应的特征索引 feature-index。

df = pd.concat([dfTrain,dfTest])

feature_dict = {}
total_feature = 0
for col in df.columns:
    if col in IGNORE_COLS:
        continue
    elif col in NUMERIC_COLS:
        feature_dict[col] = total_feature
        total_feature += 1
    else:
        unique_val = df[col].unique()
        feature_dict[col] = dict(zip(unique_val,range(total_feature,len(unique_val) + total_feature)))
        total_feature += len(unique_val)
print(total_feature)
print(feature_dict)

这里,我们定义了 total_feature 来得到总的特征数量,定义了 feature_dict 来得到变量取值到特征索引的对应关系,结果如下:

可以看到,对于连续变量,直接是变量名到索引的映射,对于离散变量,内部会嵌套一个二级 map,这个二级 map 定义了该离散变量的不同取值到索引的映射。

下一步,需要将训练集和测试集转换为两个新的数组,分别是 feature-index,将每一条数据转换为对应的特征索引,以及 feature-value,将每一条数据转换为对应的特征值。

"""
对训练集进行转化
"""
print(dfTrain.columns)
train_y = dfTrain[['target']].values.tolist()
dfTrain.drop(['target','id'],axis=1,inplace=True)
train_feature_index = dfTrain.copy()
train_feature_value = dfTrain.copy()

for col in train_feature_index.columns:
    if col in IGNORE_COLS:
        train_feature_index.drop(col,axis=1,inplace=True)
        train_feature_value.drop(col,axis=1,inplace=True)
        continue
    elif col in NUMERIC_COLS:
        train_feature_index[col] = feature_dict[col]
    else:
        train_feature_index[col] = train_feature_index[col].map(feature_dict[col])
        train_feature_value[col] = 1


"""
对测试集进行转化
"""
test_ids = dfTest['id'].values.tolist()
dfTest.drop(['id'],axis=1,inplace=True)

test_feature_index = dfTest.copy()
test_feature_value = dfTest.copy()

for col in test_feature_index.columns:
    if col in IGNORE_COLS:
        test_feature_index.drop(col,axis=1,inplace=True)
        test_feature_value.drop(col,axis=1,inplace=True)
        continue
    elif col in NUMERIC_COLS:
        test_feature_index[col] = feature_dict[col]
    else:
        test_feature_index[col] = test_feature_index[col].map(feature_dict[col])
        test_feature_value[col] = 1

来看看此时的训练集的特征索引:

对应的特征值:

此时,我们的训练集和测试集就处理完毕了!

2.4 模型参数及输入

接下来定义模型的一些参数,如学习率、embedding 的大小、深度网络的参数、激活函数等等,还有两个比较重要的参数,分别是 feature 的大小和 field 的大小:

"""模型参数"""
dfm_params = {
    "use_fm":True,
    "use_deep":True,
    "embedding_size":8,
    "dropout_fm":[1.0,1.0],
    "deep_layers":[32,32],
    "dropout_deep":[0.5,0.5,0.5],
    "deep_layer_activation":tf.nn.relu,
    "epoch":30,
    "batch_size":1024,
    "learning_rate":0.001,
    "optimizer":"adam",
    "batch_norm":1,
    "batch_norm_decay":0.995,
    "l2_reg":0.01,
    "verbose":True,
    "eval_metric":'gini_norm',
    "random_seed":3
}
dfm_params['feature_size'] = total_feature
dfm_params['field_size'] = len(train_feature_index.columns)

而训练模型的输入有三个,分别是刚才转换得到的特征索引和特征值,以及 label:

"""开始建立模型"""
feat_index = tf.placeholder(tf.int32,shape=[None,None],name='feat_index')
feat_value = tf.placeholder(tf.float32,shape=[None,None],name='feat_value')

label = tf.placeholder(tf.float32,shape=[None,1],name='label')

比如刚才的两个数据,对应的输入为:

定义好输入之后,再定义一下模型中所需要的 weights:

"""建立weights"""
weights = dict()

#embeddings
weights['feature_embeddings'] = tf.Variable(
    tf.random_normal([dfm_params['feature_size'],dfm_params['embedding_size']],0.0,0.01),
    name='feature_embeddings')
weights['feature_bias'] = tf.Variable(tf.random_normal([dfm_params['feature_size'],1],0.0,1.0),name='feature_bias')


#deep layers
num_layer = len(dfm_params['deep_layers'])
input_size = dfm_params['field_size'] * dfm_params['embedding_size']
glorot = np.sqrt(2.0/(input_size + dfm_params['deep_layers'][0]))

weights['layer_0'] = tf.Variable(
    np.random.normal(loc=0,scale=glorot,size=(input_size,dfm_params['deep_layers'][0])),dtype=np.float32
)
weights['bias_0'] = tf.Variable(
    np.random.normal(loc=0,scale=glorot,size=(1,dfm_params['deep_layers'][0])),dtype=np.float32
)


for i in range(1,num_layer):
    glorot = np.sqrt(2.0 / (dfm_params['deep_layers'][i - 1] + dfm_params['deep_layers'][I]))
    weights["layer_%d" % i] = tf.Variable(
        np.random.normal(loc=0, scale=glorot, size=(dfm_params['deep_layers'][i - 1], dfm_params['deep_layers'][i])),
        dtype=np.float32)  # layers[i-1] * layers[I]
    weights["bias_%d" % i] = tf.Variable(
        np.random.normal(loc=0, scale=glorot, size=(1, dfm_params['deep_layers'][i])),
        dtype=np.float32)  # 1 * layer[I]


#final concat projection layer

if dfm_params['use_fm'] and dfm_params['use_deep']:
    input_size = dfm_params['field_size'] + dfm_params['embedding_size'] + dfm_params['deep_layers'][-1]
elif dfm_params['use_fm']:
    input_size = dfm_params['field_size'] + dfm_params['embedding_size']
elif dfm_params['use_deep']:
    input_size = dfm_params['deep_layers'][-1]

glorot = np.sqrt(2.0/(input_size + 1))
weights['concat_projection'] = tf.Variable(np.random.normal(loc=0,scale=glorot,size=(input_size,1)),dtype=np.float32)
weights['concat_bias'] = tf.Variable(tf.constant(0.01),dtype=np.float32)

介绍两个比较重要的参数,weights['feature_embeddings'] 是每个特征所对应的 embedding,它的大小为 feature-size * embedding-size,另一个参数是 weights['feature_bias'] ,这个是 FM 部分计算时所用到的一次项的权重参数,可以理解为 embedding-size 为 1 的 embedding table,它的大小为 feature-size * 1。

假设 weights['feature_embeddings'] 如下:

2.5 嵌入层

嵌入层,主要根据特征索引得到对应特征的 embedding:

"""embedding"""
embeddings = tf.nn.embedding_lookup(weights['feature_embeddings'],feat_index)

reshaped_feat_value = tf.reshape(feat_value,shape=[-1,dfm_params['field_size'],1])

embeddings = tf.multiply(embeddings,reshaped_feat_value)

这里注意的是,在得到对应的 embedding 之后,还乘上了对应的特征值,这个主要是根据 FM 的公式得到的。过程表示如下:

2.6 FM 部分

我们先来回顾一下 FM 的公式,以及二次项的化简过程:

yFM=〈w,x〉+∑j1=1d∑j2=j1+1d〈Vi,Vj〉xj1⋅xj2y_{F M}=\langle w, x\rangle+\sum_{j_1=1}^d \sum_{j_2=j_1+1}^d\left\langle V_i, V_j\right\rangle x_{j_1} \cdot x_{j_2}yFM​=〈w,x〉+∑j1​=1d​∑j2​=j1​+1d​〈Vi​,Vj​〉xj1​​⋅xj2​​

上面的式子中有部分同学曾经问我第一步是怎么推导的,其实也不难,看下面的手写过程

因此,一次项的计算如下,我们刚刚也说过了,通过 weights['feature_bias'] 来得到一次项的权重系数:

fm_first_order = tf.nn.embedding_lookup(weights['feature_embeddings'],feat_index)
fm_first_order = tf.reduce_sum(tf.multiply(fm_first_order,reshaped_feat_value),2)

对于二次项,经过化简之后有两部分(暂不考虑最外层的求和),我们先用 excel 来形象展示一下两部分,这有助于你对下面代码的理解。

第一部分过程如下:

第二部分的过程如下:

最后两部分相减:

二次项部分的代码如下:

summed_features_emb = tf.reduce_sum(embeddings,1)
summed_features_emb_square = tf.square(summed_features_emb)

squared_features_emb = tf.square(embeddings)
squared_sum_features_emb = tf.reduce_sum(squared_features_emb,1)

fm_second_order = 0.5 * tf.subtract(summed_features_emb_square,squared_sum_features_emb)


要注意这里的 fm_second_order 是二维的 tensor,大小为 batch-size * embedding-size,也就是公式中最外层的一个求和还没有进行,这也是代码中与 FM 公式有所出入的地方。我们后面再讲。

2.7 Deep 部分

Deep 部分很简单了,就是几层全连接的神经网络:

"""deep part"""
y_deep = tf.reshape(embeddings,shape=[-1,dfm_params['field_size'] * dfm_params['embedding_size']])

for i in range(0,len(dfm_params['deep_layers'])):
    y_deep = tf.add(tf.matmul(y_deep,weights["layer_%d" %i]), weights["bias_%d"%I])
    y_deep = tf.nn.relu(y_deep)

2.8 输出部分

最后的输出部分,论文中的公式如下:

y^=sigmoid⁡(yFM+yDNN)\hat{y}=\operatorname{sigmoid}\left(y_{F M}+y_{D N N}\right)y^​=sigmoid(yFM​+yDNN​)

在我们的代码中如下:

"""final layer"""
if dfm_params['use_fm'] and dfm_params['use_deep']:
    concat_input = tf.concat([fm_first_order,fm_second_order,y_deep],axis=1)
elif dfm_params['use_fm']:
    concat_input = tf.concat([fm_first_order,fm_second_order],axis=1)
elif dfm_params['use_deep']:
    concat_input = y_deep
    
out = tf.nn.sigmoid(tf.add(tf.matmul(concat_input,weights['concat_projection']),weights['concat_bias']))

看似有点出入,其实真的有点出入,不过无碍,咱们做两点说明:

1)首先,这里整体上和最终的公式是相似的,看下面的 excel(由于最后一层只有一个神经元,矩阵相乘可以用对位相乘再求和代替):

2)这里不同的地方就是,FM 二次项化简之后最外层不再是简单的相加了,而是变成了加权求和(有点类似 attention 的意思),如果 FM 二次项部分对应的权重都是 1,就是标准的 FM 了。

2.9 Loss and Optimizer

这一块也不再多讲,我们使用 logloss 来指导模型的训练:

"""loss and optimizer"""
loss = tf.losses.log_loss(tf.reshape(label,(-1,1)), out)
optimizer = tf.train.AdamOptimizer(learning_rate=dfm_params['learning_rate'], beta1=0.9, beta2=0.999,
                                                        epsilon=1e-8).minimize(loss)

至此,我们整个 DeepFM 模型的架构就搭起来了,接下来,我们简单测试一下代码:

"""train"""
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(100):
        epoch_loss,_ = sess.run([loss,optimizer],feed_dict={feat_index:train_feature_index,
                             feat_value:train_feature_value,
                             label:train_y})
        print("epoch %s,loss is %s" % (str(i),str(epoch_loss)))

3.实战案例参考

搜索推荐算法挑战赛OGeek-完整方案及代码(亚军):https://cloud.tencent.com/developer/article/1479464

  • 参考链接

https://arxiv.org/pdf/1703.04247v1.pdf

http://www.360doc.com/content/21/0720/21/99071_987495812.shtml

https://blog.csdn.net/hero_myself/article/details/117522304

https://cloud.tencent.com/developer/article/1479464

链接:牛客网 - 找工作神器|笔试题库|面试经验|实习招聘内推,求职就业一站解决_牛客网
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2216715.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【时时三省】(C语言基础)函数介绍strcat

山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 strcat 字符串追加 示例: 比如我要把world加到hello后面去 就可以用这个 还有一种方法是这样 这两个代码的意思是一样的 只是写法不一样 写的时候要注意这些 •源字符串必须…

DAB-DETR: DYNAMIC ANCHOR BOXES ARE BETTER QUERIES FOR DETR论文笔记

原文链接 [2201.12329] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR (arxiv.org)https://arxiv.org/abs/2201.12329 原文笔记 在本文中,我们提出了一种新的查询公式,使用动态锚框进行DETR (DEtection TRansformer),并对查…

探索人工智能在数学教育上的应用——使用大规模语言模型解决数学问题的潜力和挑战

概述 论文地址:https://arxiv.org/abs/2402.00157 数学推理是人类智能的重要组成部分,人工智能界不断寻求应对数学挑战的方法,而在这一过程中,人工智能的能力需要进一步提高。从文本理解到图像解读,从表格分析到符号操…

大数据|MapReduce编程原理与应用

在大数据时代的浪潮中,MapReduce作为一种高效处理海量数据的编程模型,自其诞生以来便成为了数据处理领域的基石。本文旨在深入探讨MapReduce的基本原理、典型应用以及其在未来技术发展趋势中的展望,帮助读者更好地理解并应用这一关键技术。 一…

数制转换及交换机

数制转换 非位置化数字系统:罗马数字 位置化数字系统:二进制,八进制,十进制,十六进制 十进制数: 符号:2 2 2位置:2 1 0位权:该数字的真实大小 该位置上的数基数的位置…

如何设计开发RTSP直播播放器?

技术背景 我们在对接RTSP直播播放器相关技术诉求的时候,好多开发者,除了选用成熟的RTSP播放器外,还想知其然知其所以然,对RTSP播放器的整体开发有个基础的了解,方便方案之作和技术延伸。本文抛砖引玉,做个…

所有程序员的白嫖圣地-github

内容汇总 认识github页面如何从github下载资源git配置如何通过github管理工程代码 有人问github怎么用,几分钟了解这个每个程序员都在用的白嫖圣地。 打开github主界面,映入眼帘的是Home面板,它的作用是显示我们关注的人、点赞的项目等更新…

一款非常有用且高效的国产的Linux运维面板:1Panel介绍

1Panel介绍 一、1panel介绍二、1panel的安装1、不同系统安装2、安装日志3、访问地址 三、1panel的卸载1、停止服务2、卸载服务3、清理残留文件4、清除日志文件5、验证卸载是否成功 四、1panel的功能介绍1、服务器资源使用情况快速监控2、文件管理器简单易用3、创建和管理网站轻…

【Linux操作系统】进程等待

目录 一、什么是进程等待?二、为什么要进行等待?三、进程等待方法1.wait函数2.waitpid3.status阻塞等待和非阻塞等待(轮询等待)1.阻塞等待2.非阻塞等待 四、代码举例 一、什么是进程等待? "进程等待"是指一…

基于springboot摄影跟拍预定管理系统

作者:计算机学长阿伟 开发技术:SpringBoot、SSM、Vue、MySQL、ElementUI等,“文末源码”。 系统展示 【2024最新】基于JavaSpringBootVueMySQL的,前后端分离。 开发语言:Java数据库:MySQL技术:…

Finops成本优化企业实践-可规划篇

引言:本篇假设我们要在云上新增一个应用,讨论其在单体、failover、DR、集群模式下的成本规划。 假设该应用base on Linux,硬件要求是8cores、64G mem的云主机,并搭配500g内存,至少部署在一台云主机上。我们有开发、测…

Java项目: 基于SpringBoot+mysql+maven+vue林业产品推荐系统(含源码+数据库+毕业论文)

一、项目简介 本项目是一套基于SpringBootmybatismavenvue林业产品推荐系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操…

【Linux】解锁软硬链接奥秘,高效动静态库管理的实战技巧

软硬连接和动静态库 1. 软链接1.1. 概念1.2. 特点1.3. 应用场景 2. 硬链接2.1. 概念2.2. 硬链计数2.3. 特点2.4. 应用场景 3. 动静态库3.1 库存在的原因3.2. 静态库制作与使用3.2.1 打包3.2.2. 使用 3.3. 动态库制作与使用3.3.1. 打包3.3.2. 使用 4. 解决动态库查不到的4种方法…

GStreamer 简明教程(七):实现管道的动态数据流

系列文章目录 GStreamer 简明教程(一):环境搭建,运行 Basic Tutorial 1 Hello world! GStreamer 简明教程(二):基本概念介绍,Element 和 Pipeline GStreamer 简明教程(三…

多场景多任务建模(三): M2M(Multi-Scenario Multi-Task Meta Learning)

多场景建模: STAR(Star Topology Adaptive Recommender) 多场景建模(二): SAR-Net(Scenario-Aware Ranking Network) 前面两篇文章,讲述了关于多场景的建模方案,其中可以看到很多关于多任务学习的影子&…

OGG错误:ORA-28000:the account is locked

问题描述 问题分析 从错误看,应该是ogg的角色锁定了,需要解锁 解决方案 解锁用户 SQL> alter user GGR_OGSREPO account unlock;

【Spring】Spring实现加法计算器和用户登录

加法计算器 准备工作 创建 SpringBoot 项目&#xff1a;引入 Spring Web 依赖&#xff0c;把前端的页面放入项目中 **<!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport"…

Linux介绍及常用命令

Linux 系统简介 1969 年&#xff0c;AT&T 公司的⻉尔实验室P MIT 合作开发的 Unix&#xff0c;在于创建⼀个⽤于⼤型、并⾏、多⽤户的操作系统Unix 的推⼴&#xff1a;从学校⾛进企业Unix 的版本要两个&#xff1a; AT&T System V ——就是俗称的 系统 5Berkley Soft…

Linux中文件的理解

✨前言✨ &#x1f4d8; 博客主页&#xff1a;to Keep博客主页 &#x1f646;欢迎关注&#xff0c;&#x1f44d;点赞&#xff0c;&#x1f4dd;留言评论 ⏳首发时间&#xff1a;2024年10月16日 &#x1f4e8; 博主码云地址&#xff1a;渣渣C &#x1f4d5;参考书籍&#xff1a…

如何使用Nessus软件

Nessus&#xff08;Win2022虚拟机已安装&#xff09; [ root root ] 访问https://127.0.0.1:8834 如果出现以下问题 解决方法&#xff1a; 1.在地址栏输入&#xff1a;about:config 2.在搜索框 输入&#xff1a;security.enterprise_roots.enabled 将值切换为true即可。…