SpringBoot教程(三十二) | SpringBoot集成Skywalking链路跟踪

news2025/1/15 8:30:08

SpringBoot教程(三十二) | SpringBoot集成Skywalking链路跟踪

  • Skywalking是什么?
  • Skywalking与JDK版本的对应关系
  • Skywalking下载
  • Skywalking 数据存储
  • Skywalking 的启动
  • 部署探针
    • 方式一:IDEA 部署探针
    • 方式二:Java 命令行启动方式
    • 方式三:编写sh脚本启动(linux环境)
  • Springboot 的启动
    • IDEA 部署探针方式启动
    • Skywalking 进行日志配置

Skywalking是什么?

SkyWalking是一个开源的、用于观测分布式系统(特别是微服务、云原生和容器化应用)的平台。
它提供了对分布式系统的追踪、监控和诊断能力。

Skywalking与JDK版本的对应关系

SkyWalking 8.x版本要求Java版本至少为8(即JDK 1.8),
SkyWalking 9.x版本则要求Java版本至少为11(即JDK 11)

所以选择的时候需要注意一下JDK版本。

Skywalking下载

Skywalking 官网下载地址 https://skywalking.apache.org/downloads/
在这里插入图片描述

  • 其他的版本的 APM 地址
    https://archive.apache.org/dist/skywalking/

  • 其他的java 版本的 Agents 地址
    https://archive.apache.org/dist/skywalking/java-agent/

注意点:
7.x及以下版本 APM 包里面有包括 Agents,但是8.x的就发现被分开了,所以8.x的及以上的 就需要 Agents 也得下载

目前该文选择 下载 APM 8.9.1 和 Agents 8.9.0 后解压
在这里插入图片描述

接着把 Agents 文件放到 APM 文件中
在这里插入图片描述

Skywalking 数据存储

Skywalking 存在多种数据存储

  1. h2(默认的存储方式,重启后数据会丢失)
  2. Elasticsearch (最常用的数据存储方式)
  3. MySQL
  4. TiDB

相关文件OAP 配置文件(config/application.yml)
我只截取了关于设置存储方式的部分

storage:
  selector: ${SW_STORAGE:h2}
  elasticsearch:
    namespace: ${SW_NAMESPACE:""}
    clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:localhost:9200}
    protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}
    connectTimeout: ${SW_STORAGE_ES_CONNECT_TIMEOUT:500}
    socketTimeout: ${SW_STORAGE_ES_SOCKET_TIMEOUT:30000}
    numHttpClientThread: ${SW_STORAGE_ES_NUM_HTTP_CLIENT_THREAD:0}
    user: ${SW_ES_USER:""}
    password: ${SW_ES_PASSWORD:""}
    trustStorePath: ${SW_STORAGE_ES_SSL_JKS_PATH:""}
    trustStorePass: ${SW_STORAGE_ES_SSL_JKS_PASS:""}
    secretsManagementFile: ${SW_ES_SECRETS_MANAGEMENT_FILE:""} # Secrets management file in the properties format includes the username, password, which are managed by 3rd party tool.
    dayStep: ${SW_STORAGE_DAY_STEP:1} # Represent the number of days in the one minute/hour/day index.
    indexShardsNumber: ${SW_STORAGE_ES_INDEX_SHARDS_NUMBER:1} # Shard number of new indexes
    indexReplicasNumber: ${SW_STORAGE_ES_INDEX_REPLICAS_NUMBER:1} # Replicas number of new indexes
    # Super data set has been defined in the codes, such as trace segments.The following 3 config would be improve es performance when storage super size data in es.
    superDatasetDayStep: ${SW_SUPERDATASET_STORAGE_DAY_STEP:-1} # Represent the number of days in the super size dataset record index, the default value is the same as dayStep when the value is less than 0
    superDatasetIndexShardsFactor: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_SHARDS_FACTOR:5} #  This factor provides more shards for the super data set, shards number = indexShardsNumber * superDatasetIndexShardsFactor. Also, this factor effects Zipkin and Jaeger traces.
    superDatasetIndexReplicasNumber: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_REPLICAS_NUMBER:0} # Represent the replicas number in the super size dataset record index, the default value is 0.
    indexTemplateOrder: ${SW_STORAGE_ES_INDEX_TEMPLATE_ORDER:0} # the order of index template
    bulkActions: ${SW_STORAGE_ES_BULK_ACTIONS:5000} # Execute the async bulk record data every ${SW_STORAGE_ES_BULK_ACTIONS} requests
    # flush the bulk every 10 seconds whatever the number of requests
    # INT(flushInterval * 2/3) would be used for index refresh period.
    flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:15}
    concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2} # the number of concurrent requests
    resultWindowMaxSize: ${SW_STORAGE_ES_QUERY_MAX_WINDOW_SIZE:10000}
    metadataQueryMaxSize: ${SW_STORAGE_ES_QUERY_MAX_SIZE:5000}
    segmentQueryMaxSize: ${SW_STORAGE_ES_QUERY_SEGMENT_SIZE:200}
    profileTaskQueryMaxSize: ${SW_STORAGE_ES_QUERY_PROFILE_TASK_SIZE:200}
    oapAnalyzer: ${SW_STORAGE_ES_OAP_ANALYZER:"{\"analyzer\":{\"oap_analyzer\":{\"type\":\"stop\"}}}"} # the oap analyzer.
    oapLogAnalyzer: ${SW_STORAGE_ES_OAP_LOG_ANALYZER:"{\"analyzer\":{\"oap_log_analyzer\":{\"type\":\"standard\"}}}"} # the oap log analyzer. It could be customized by the ES analyzer configuration to support more language log formats, such as Chinese log, Japanese log and etc.
    advanced: ${SW_STORAGE_ES_ADVANCED:""}
  h2:
    driver: ${SW_STORAGE_H2_DRIVER:org.h2.jdbcx.JdbcDataSource}
    url: ${SW_STORAGE_H2_URL:jdbc:h2:mem:skywalking-oap-db;DB_CLOSE_DELAY=-1}
    user: ${SW_STORAGE_H2_USER:sa}
    metadataQueryMaxSize: ${SW_STORAGE_H2_QUERY_MAX_SIZE:5000}
    maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}
    numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:100}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:1}
  mysql:
    properties:
      jdbcUrl: ${SW_JDBC_URL:"jdbc:mysql://localhost:3306/swtest?rewriteBatchedStatements=true"}
      dataSource.user: ${SW_DATA_SOURCE_USER:root}
      dataSource.password: ${SW_DATA_SOURCE_PASSWORD:root@1234}
      dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true}
      dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250}
      dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048}
      dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true}
    metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000}
    maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}
    numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:2000}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:4}
  tidb:
    properties:
      jdbcUrl: ${SW_JDBC_URL:"jdbc:mysql://localhost:4000/tidbswtest?rewriteBatchedStatements=true"}
      dataSource.user: ${SW_DATA_SOURCE_USER:root}
      dataSource.password: ${SW_DATA_SOURCE_PASSWORD:""}
      dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true}
      dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250}
      dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048}
      dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true}
      dataSource.useAffectedRows: ${SW_DATA_SOURCE_USE_AFFECTED_ROWS:true}
    metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000}
    maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}
    numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:2000}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:4}
  influxdb:
    # InfluxDB configuration
    url: ${SW_STORAGE_INFLUXDB_URL:http://localhost:8086}
    user: ${SW_STORAGE_INFLUXDB_USER:root}
    password: ${SW_STORAGE_INFLUXDB_PASSWORD:}
    database: ${SW_STORAGE_INFLUXDB_DATABASE:skywalking}
    actions: ${SW_STORAGE_INFLUXDB_ACTIONS:1000} # the number of actions to collect
    duration: ${SW_STORAGE_INFLUXDB_DURATION:1000} # the time to wait at most (milliseconds)
    batchEnabled: ${SW_STORAGE_INFLUXDB_BATCH_ENABLED:true}
    fetchTaskLogMaxSize: ${SW_STORAGE_INFLUXDB_FETCH_TASK_LOG_MAX_SIZE:5000} # the max number of fetch task log in a request
    connectionResponseFormat: ${SW_STORAGE_INFLUXDB_CONNECTION_RESPONSE_FORMAT:MSGPACK} # the response format of connection to influxDB, cannot be anything but MSGPACK or JSON.
  postgresql:
    properties:
      jdbcUrl: ${SW_JDBC_URL:"jdbc:postgresql://localhost:5432/skywalking"}
      dataSource.user: ${SW_DATA_SOURCE_USER:postgres}
      dataSource.password: ${SW_DATA_SOURCE_PASSWORD:123456}
      dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true}
      dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250}
      dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048}
      dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true}
    metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000}
    maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}
    numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:2000}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:4}
  zipkin-elasticsearch:
    namespace: ${SW_NAMESPACE:""}
    clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:localhost:9200}
    protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}
    trustStorePath: ${SW_STORAGE_ES_SSL_JKS_PATH:""}
    trustStorePass: ${SW_STORAGE_ES_SSL_JKS_PASS:""}
    dayStep: ${SW_STORAGE_DAY_STEP:1} # Represent the number of days in the one minute/hour/day index.
    indexShardsNumber: ${SW_STORAGE_ES_INDEX_SHARDS_NUMBER:1} # Shard number of new indexes
    indexReplicasNumber: ${SW_STORAGE_ES_INDEX_REPLICAS_NUMBER:1} # Replicas number of new indexes
    # Super data set has been defined in the codes, such as trace segments.The following 3 config would be improve es performance when storage super size data in es.
    superDatasetDayStep: ${SW_SUPERDATASET_STORAGE_DAY_STEP:-1} # Represent the number of days in the super size dataset record index, the default value is the same as dayStep when the value is less than 0
    superDatasetIndexShardsFactor: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_SHARDS_FACTOR:5} #  This factor provides more shards for the super data set, shards number = indexShardsNumber * superDatasetIndexShardsFactor. Also, this factor effects Zipkin and Jaeger traces.
    superDatasetIndexReplicasNumber: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_REPLICAS_NUMBER:0} # Represent the replicas number in the super size dataset record index, the default value is 0.
    user: ${SW_ES_USER:""}
    password: ${SW_ES_PASSWORD:""}
    secretsManagementFile: ${SW_ES_SECRETS_MANAGEMENT_FILE:""} # Secrets management file in the properties format includes the username, password, which are managed by 3rd party tool.
    bulkActions: ${SW_STORAGE_ES_BULK_ACTIONS:5000} # Execute the async bulk record data every ${SW_STORAGE_ES_BULK_ACTIONS} requests
    # flush the bulk every 10 seconds whatever the number of requests
    # INT(flushInterval * 2/3) would be used for index refresh period.
    flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:15}
    concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2} # the number of concurrent requests
    resultWindowMaxSize: ${SW_STORAGE_ES_QUERY_MAX_WINDOW_SIZE:10000}
    metadataQueryMaxSize: ${SW_STORAGE_ES_QUERY_MAX_SIZE:5000}
    segmentQueryMaxSize: ${SW_STORAGE_ES_QUERY_SEGMENT_SIZE:200}
    profileTaskQueryMaxSize: ${SW_STORAGE_ES_QUERY_PROFILE_TASK_SIZE:200}
    oapAnalyzer: ${SW_STORAGE_ES_OAP_ANALYZER:"{\"analyzer\":{\"oap_analyzer\":{\"type\":\"stop\"}}}"} # the oap analyzer.
    oapLogAnalyzer: ${SW_STORAGE_ES_OAP_LOG_ANALYZER:"{\"analyzer\":{\"oap_log_analyzer\":{\"type\":\"standard\"}}}"} # the oap log analyzer. It could be customized by the ES analyzer configuration to support more language log formats, such as Chinese log, Japanese log and etc.
    advanced: ${SW_STORAGE_ES_ADVANCED:""}
  iotdb:
    host: ${SW_STORAGE_IOTDB_HOST:127.0.0.1}
    rpcPort: ${SW_STORAGE_IOTDB_RPC_PORT:6667}
    username: ${SW_STORAGE_IOTDB_USERNAME:root}
    password: ${SW_STORAGE_IOTDB_PASSWORD:root}
    storageGroup: ${SW_STORAGE_IOTDB_STORAGE_GROUP:root.skywalking}
    sessionPoolSize: ${SW_STORAGE_IOTDB_SESSIONPOOL_SIZE:16}
    fetchTaskLogMaxSize: ${SW_STORAGE_IOTDB_FETCH_TASK_LOG_MAX_SIZE:1000} # the max number of fetch task log in a request


Skywalking 的启动

进入 D:\apache-skywalking-apm-8.9.1\apache-skywalking-apm-bin\bin ,双击运行 startup.bat(用管理员方式启动),会开启两个命令行窗口。

  • (1)Skywalking-Collector:追踪信息收集器,通过 gRPC/Http 收集客户端的采集信息 。Http默认端口 12800,gRPC默认端口 11800。(如需要修改,可前往 apache-skywalking-apm-bin\config\applicaiton.yml 进行修改)
  • (2)Skywalking-Webapp:管理平台页面 默认端口 8080 (如需要修改,可前往 apache-skywalking-apm-bin\webapp\webapp.yml 进行修改)

启动图如下:
在这里插入图片描述

接着浏览器Skywalking访问:http://localhost:8080/
这个右边有个自动刷新的按钮,一定要启动起来
不然到时候,springboot工程启动以后,你以为没有连接成功(F5刷新页面是没有用的)
在这里插入图片描述

部署探针

方式一:IDEA 部署探针

修改启动类的 VM options(虚拟机选项)配置
在这里插入图片描述

在这里插入图片描述
配置的jvm参数如下:

-javaagent:D:\apache-skywalking-apm-8.9.1\apache-skywalking-apm-bin\skywalking-agent\skywalking-agent.jar
-DSW_AGENT_NAME=woqu-ndy
-DSW_AGENT_COLLECTOR_BACKEND_SERVICES=127.0.0.1:11800
  • javaagent: 表示 skywalking‐agent.jar的本地磁盘的路径
  • DSW_AGENT_NAME:表示在skywalking上显示的服务名
  • DSW_AGENT_COLLECTOR_BACKEND_SERVICES:表示skywalking的collector服务的IP及端口
  • 注意:DSW_AGENT_COLLECTOR_BACKEND_SERVICES 可以指定远程地址, 但是 javaagent 必须绑定你本机物理路径的skywalking-agent.jar

方式二:Java 命令行启动方式

java -javaagent:C:\Users\ke\Desktop\apache-skywalking-apm-6.6.0\apache-skywalking-apm-bin\agent/skywalking-agent.jar=-Dskywalking.agent.service_name=service-myapp,-Dskywalking.collector.backend_service=localhost:11800 -jar service-myapp.jar

方式三:编写sh脚本启动(linux环境)

#!/bin/bash  

# 设置 SkyWalking Agent 的路径  
AGENT_PATH="/home/yourusername/Desktop/apache-skywalking-apm-6.6.0/apache-skywalking-apm-bin/agent"  

# 设置 Java 应用的 JAR 文件路径  
JAR_PATH="/path/to/your/service-myapp.jar"  

# 设置 SkyWalking 服务名称和 Collector 后端服务地址  
SERVICE_NAME="service-myapp"  
COLLECTOR_BACKEND_SERVICE="localhost:11800"  

# 构造 Java Agent 参数  
JAVA_AGENT="-javaagent:$AGENT_PATH/skywalking-agent.jar \  
            -Dskywalking.agent.service_name=$SERVICE_NAME \  
            -Dskywalking.collector.backend_service=$COLLECTOR_BACKEND_SERVICE"  
  
# 启动 Java 应用  
java $JAVA_AGENT -jar $JAR_PATH

Springboot 的启动

IDEA 部署探针方式启动

启动后,控制台日志输出开头出现了以下的记录,就表示连接上Skywalking了
在这里插入图片描述
再看 Skywalking(http://localhost:8080/) 页面那边,你就会发现有个这个图(表示连接上了)
在这里插入图片描述
我们再请求一下 Controller 的接口,就会发现捕获了相关接口记录
(但是目前,还是没有接口具体详细的日志入参或者出参的)
在这里插入图片描述
在这里插入图片描述

Skywalking 进行日志配置

为log日志增加 skywalking的 traceId(追踪ID)。便于排查

首先引入maven依赖

<!-- skywalking-logback skyWalking中的traceId记录到logback日志 ↓ -->
<dependency>
   <groupId>org.apache.skywalking</groupId>
   <artifactId>apm-toolkit-logback-1.x</artifactId>
   <version>9.0.0</version>
</dependency>

接着在 resources文件夹下创建 logback-spring.xml文件

<?xml version="1.0" encoding="UTF-8"?>
<configuration debug="false">

    <!--定义日志文件的存储地址 勿在 LogBack 的配置中使用相对路径-->
    <property name="LOG_HOME" value="D:/logs/" ></property>

    <!-- 彩色日志 -->
    <conversionRule conversionWord="clr" converterClass="org.springframework.boot.logging.logback.ColorConverter" />

    <!--控制台日志, 控制台输出 -->
    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <!--格式化输出:%d表示日期,%thread表示线程名,%-5level:级别从左显示5个字符宽度%msg:日志消息,%n是换行符-->
                <pattern>%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} [%X{tid}] %clr([%-10.10thread]){faint} %clr(%-5level) %clr(%-50.50logger{50}:%-3L){cyan} %clr(-){faint} %msg%n</pattern>
            </layout>
        </encoder>
    </appender>

    <!--文件日志, 按照每天生成日志文件 (只能是 由 Logger 或者 LoggerFactory 记录的日志消息哦)-->
    <!--以下关于 日志文件的pattern 需要去掉颜色,防止出现 ANSI转义序列-->
    <appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
            <!--日志文件输出的文件名-->
            <FileNamePattern>${LOG_HOME}/%d{yyyy-MM-dd}/pro.log</FileNamePattern>
            <!--日志文件保留天数-->
            <MaxHistory>30</MaxHistory>
        </rollingPolicy>
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <!--格式化输出:%d表示日期,%thread表示线程名,%-5level:级别从左显示5个字符宽度%msg:日志消息,%n是换行符-->
                <!--            <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>-->
                <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%X{tid}] [%-10.10thread] %-5level %-50.50logger{50}:%-3L - %msg%n</pattern>
            </layout>
        </encoder>
        <!--日志文件最大的大小-->
        <triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
            <MaxFileSize>10MB</MaxFileSize>
        </triggeringPolicy>
    </appender>

    <!--skywalking grpc 日志收集-->
    <appender name="grpc" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <Pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%X{tid}] [%thread] %-5level %logger{36} -%msg%n</Pattern>
            </layout>
        </encoder>
    </appender>


    <!-- 日志输出级别 -->
    <root level="INFO">
        <appender-ref ref="STDOUT" ></appender-ref>
        <appender-ref ref="FILE" ></appender-ref>
        <appender-ref ref="grpc"/>
    </root>
</configuration>


请求接口就可以发现TID的输出
(在这里是882c67dc859046c398fbfc5725df9de0.109.17288962842340001)
在这里插入图片描述

然后把它放到 追踪 栏目的追踪id ,可以查到记录

在这里插入图片描述
然后把它放到 日志 栏目的追踪id ,可以查到记录
在这里插入图片描述

参考文章
【1】skywalking环境搭建(windows)
【2】windows下安装skywalking 9.2
【3】SpringBoot集成Skywalking日志收集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2214709.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

101 - Lecture 7

回顾冯诺依曼模型&#xff08;von Neumann Model&#xff09;&#xff0c;这是现代计算机体系结构的基础。以下是该模型的关键概念&#xff1a; 1.通用计算机&#xff1a; • 冯诺依曼提出的计算机是通用机器&#xff08;general- purpose&#xff09;&#xff0c;可以通过可…

如何防止架构师PM化?

目录标题 导读引言&#xff1a;什么是架构师PM化架构师PM化的特点亲力操刀的实质性工作越来越少更喜欢拉会催进度越来越难直接回答问题喜欢流程 架构师PM化的危害对项目的危害对组织的危害对架构师个人的危害对研发同学的危害 如何防止架构师PM化组织上要提倡做实事个人上要做点…

MySQL UDF提权原理

文章目录 前言一、MySQL架构二、什么是UDF三、UDF提权原理四、MSF实战参考 前言 看了许多视频和文章&#xff0c;对UDF提权讲得都不是很清楚&#xff0c;遂搜索了一下MySQL的基础知识&#xff0c;总结了一下&#xff0c;供各位初学的师傅参考。 一、MySQL架构 首先&#xff…

Broken pipe异常分析及处理

问题出现&#xff1a;生产上运行的系统业务正常&#xff0c;当在查询数据时&#xff0c;出现后台异常&#xff0c;检查后台日志出现Broken Pipe异常&#xff1b; 如图示&#xff1a; Broken Pipe定义&#xff1a;通常发生在服务器端尝试向已关闭的套接字&#xff08;客户端/端…

Datawhale 组队学习 文生图 Prompt攻防 task02随笔

往期task01链接&#xff1a;task01笔记 本期我们继续从赛季的评价方法切入&#xff0c;探讨如何通过大模型生成更加多样的提示词&#xff0c;让得分更高。 赛题评价方法 结合赛题的要求&#xff0c;赛题文生图大模型服务的全链路框架如下所示&#xff1a; 给定文本prompt&am…

盘点超好用的 Windows 录屏软件,轻松记录屏幕精彩

在当今数字化信息高速流转的时代&#xff0c;屏幕录制已经成为我们日常工作、学习和娱乐中不可或缺的一项技能。如果你是微软电脑&#xff0c;正好我今天想要介绍的就是windows怎么录屏相关工具的操作&#xff0c;感兴趣就继续往下看吧。 1.FOXIT录屏大师 链接直达&#xff1…

【机器学习(十三)】零代码开发案例之股票价格预测分析—Sentosa_DSML社区版

文章目录 一、背景描述二、Sentosa_DSML社区版算法实现(一) 数据读入(二) 特征工程(三) 样本分区(四) 模型训练和评估(五) 模型可视化 三、总结 一、背景描述 股票价格是一种不稳定的时间序列,受多种因素的影响。影响股市的外部因素很多,主要有经济因素、政治因素和公司自身因素…

开源:轻量级异步编排框架

前言 为了更快、更方便的对方法实现异步并排调用&#xff0c;因此实现了一个通过注解就可对方法/类进行异步调用的轻量级异步并排框架。 项目地址&#xff1a;https://gitee.com/madaoEE/my-async 介绍 一个简单实现的异步框架&#xff0c;通过注解对方法、类对象添加异步操…

SpringBoot实现的人事信息管理平台:技术与应用

1系统概述 1.1 研究背景 如今互联网高速发展&#xff0c;网络遍布全球&#xff0c;通过互联网发布的消息能快而方便的传播到世界每个角落&#xff0c;并且互联网上能传播的信息也很广&#xff0c;比如文字、图片、声音、视频等。从而&#xff0c;这种种好处使得互联网成了信息传…

MATLAB代码解析:利用DCGAN实现图像数据的生成

摘要 经典代码&#xff1a;利用DCGAN生成花朵 MATLAB官方其实给出了DCGAN生成花朵的示范代码&#xff0c;原文地址&#xff1a;训练生成对抗网络 (GAN) - MATLAB & Simulink - MathWorks 中国 先看看训练效果 训练1周期 训练11周期 训练56个周期 脚本文件 为了能让各位…

数据库初体验

这两天我学习了数据库的一点知识&#xff0c;我觉得最大的不同就是数据库的代码只能一行一行的运行。 接下来记录我学的东西吧。 第一步 肯定是一些定义知识啦&#xff0c;就不记录了 有一些写一下&#xff0c;数据库的分类为关系型数据库和非关系型数据库 关系型数据库是把复…

Firefox火狐浏览器打开B站视频时默认静音

文章目录 环境问题解决办法 环境 Windows 11家庭版Firefox浏览器 131.0.2 (64 位) 问题 用Firefox浏览器打开B站的视频时&#xff0c;默认是静音播放的&#xff1a; 而其它浏览器&#xff0c;比如Chrome和Edge&#xff0c;默认是带声音播放的。 虽然不是什么大问题&#xf…

工具篇:(一)MacOS 下使用 Navicat 管理 MySQL 数据库:详细图文教程与常见问题解决

MacOS 下使用 Navicat 管理 MySQL 数据库&#xff1a;详细图文教程与常见问题解决 在这篇文章中&#xff0c;我将分享如何在 macOS 上使用 Navicat 来管理 MySQL 数据库。这是一份详细的教程&#xff0c;包括 Navicat 的下载、安装、配置以及使用步骤&#xff0c;并附上亲测的…

优化UVM环境(二)-将error/fatal红色字体打印,pass绿色字体打印

书接上回&#xff1a; 优化UVM环境&#xff08;一&#xff09;-环境结束靠的是timeout&#xff0c;而不是正常的objection结束 将error/fatal红色字体打印&#xff0c;pass绿色字体打印 红色字体的error&#xff1a; 31表示字体颜色是红色 1m表示加粗 绿色字体的pass&#…

高可用之限流-05-slide window 滑动窗口

限流系列 开源组件 rate-limit: 限流 高可用之限流-01-入门介绍 高可用之限流-02-如何设计限流框架 高可用之限流-03-Semaphore 信号量做限流 高可用之限流-04-fixed window 固定窗口 高可用之限流-05-slide window 滑动窗口 高可用之限流-06-slide window 滑动窗口 sen…

ReferenceError: MutationEvent is not defined

解决&#xff1a;关闭tampermonkey&#xff08;篡改猴&#xff09;插件后也不可以&#xff0c;移除tampermonkey&#xff08;篡改猴&#xff09;插件仔刷新就可以了

Linux:Ubuntu系统开启SSH服务

在Ubuntu上开启SSH服务&#xff0c;可以按照以下步骤进行&#xff1a; 1.安装OpenSSH服务 如果你还没有安装OpenSSH服务&#xff0c;可以使用以下命令安装&#xff1a; sudo apt update sudo apt install openssh-server2. 启动SSH服务 安装完成后&#xff0c;启动SSH服务&a…

Leetcode 721 账户合并

Leetcode 721 账户合并 给定一个列表 accounts&#xff0c;每个元素 accounts[i] 是一个字符串列表&#xff0c;其中第一个元素 accounts[i][0] 是 名称 (name)&#xff0c;其余元素是 *emails * 表示该账户的邮箱地址。 现在&#xff0c;我们想合并这些账户。如果两个账户都…

jmeter在beanshell中使用props.put()方法的注意事项

在jmeter中&#xff0c;通常使用beanshell去处理一些属性的设置和获取的操作&#xff0c;而这些操作也是有一定的规则的。 1. 设置属性时&#xff0c;在属性名上要加双引号&#xff0c;这代表它不是一个需要用var去声明的变量 这种设置属性的方式才是有效可行的&#xff0c;在…

[权威出刊|稳定检索]2024年云计算、大数据与计算机应用技术国际会议(CCBDCAT 2024)

2024年云计算、大数据与计算机应用技术国际会议 2024 International Conference on Cloud Computing, Big Data, and Computer Application Technology 【1】大会信息 会议名称&#xff1a;2024年云计算、大数据与计算机应用技术国际会议 会议简称&#xff1a;CCBDCAT 2024 大…