YOLO11改进 | 注意力机制 | 结合静态和动态上下文信息的注意力机制

news2024/11/25 13:46:28

秋招面试专栏推荐深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


上下文Transformer(CoT)块是一种新颖的Transformer风格模块,用于视觉识别。它充分利用输入键之间的上下文信息来指导动态注意力矩阵的学习,从而加强了视觉表示的能力。CoT块首先通过3×3卷积对输入键进行上下文化编码,得到输入的静态上下文表示。然后,将编码后的键与输入查询连接起来,通过两个连续的1×1卷积来学习动态的多头注意力矩阵。最后,将静态和动态上下文表示的融合作为输出。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改并将修改后的完整代码放在文章的最后方便大家一键运行小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

目录

1.论文

2. 将CoTAttention添加到YOLO11中

2.1 CoTAttention代码实现

2.2 更改init.py文件

2.3 添加yaml文件

2.4 在task.py中进行注册

2.5 执行程序

3.修改后的网络结构图

4. 完整代码分享

5. GFLOPs

6. 进阶

7.总结


1.论文

论文地址:Contextual Transformer Networks for Visual Recognition——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

2. 将CoTAttention添加到YOLO11中

2.1 CoTAttention代码实现

关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中

class CoTAttention(nn.Module):

    def __init__(self, dim=512, kernel_size=3):
        super().__init__()
        self.dim = dim
        self.kernel_size = kernel_size

        self.key_embed = nn.Sequential(
            nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=4, bias=False),
            nn.BatchNorm2d(dim),
            nn.SiLU()
        )
        self.value_embed = nn.Sequential(
            nn.Conv2d(dim, dim, 1, bias=False),
            nn.BatchNorm2d(dim)
        )

        factor = 4
        self.attention_embed = nn.Sequential(
            nn.Conv2d(2 * dim, 2 * dim // factor, 1, bias=False),
            nn.BatchNorm2d(2 * dim // factor),
            nn.SiLU(),
            nn.Conv2d(2 * dim // factor, kernel_size * kernel_size * dim, 1)
        )

    def forward(self, x):
        bs, c, h, w = x.shape
        k1 = self.key_embed(x)  # bs,c,h,w
        v = self.value_embed(x).view(bs, c, -1)  # bs,c,h,w

        y = torch.cat([k1, x], dim=1)  # bs,2c,h,w
        att = self.attention_embed(y)  # bs,c*k*k,h,w
        att = att.reshape(bs, c, self.kernel_size * self.kernel_size, h, w)
        att = att.mean(2, keepdim=False).view(bs, c, -1)  # bs,c,h*w
        k2 = F.softmax(att, dim=-1) * v
        k2 = k2.view(bs, c, h, w)

        return k1 + k2

2.2 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 添加yaml文件

关键步骤三:在/ultralytics/ultralytics/cfg/models/11下面新建文件yolo11_CoTA.yaml文件,粘贴下面的内容

  • 目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
  - [ -1, 1, CoTAttention, [1024] ]

  - [[16, 19, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
  • 语义分割
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
  - [ -1, 1, CoTAttention, [1024] ]

  - [[16, 19, 23], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
  • 旋转目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
  - [ -1, 1, CoTAttention, [1024] ]

  - [[16, 19, 23], 1, OBB, [nc, 1]] # Detect(P3, P4, P5)

温馨提示:本文只是对yolo11基础上添加模块,如果要对yolo11n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。


# YOLO11n
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channel:1024
 
# YOLO11s
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channel:1024
 
# YOLO11m
depth_multiple: 0.50  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512
 
# YOLO11l 
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512 
 
# YOLO11x
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.50 # layer channel multiple
max_channel:512

2.4 在task.py中进行注册

关键步骤四:在task.py的parse_model函数中进行注册,

 先在task.py导入函数

然后在task.py文件下找到parse_model这个函数,如下图,添加CoTAttention

elif m is CoTAttention:
            c1, c2 = ch[f], args[0]
            if c2 != nc:
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, *args[1:]]

2.5 执行程序

关键步骤五:在ultralytics文件中新建train.py,将model的参数路径设置为yolo11_CoTA.yaml的路径即可

from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Path
 
if __name__ == '__main__':
 
 
    # 加载模型
    model = YOLO("ultralytics/cfg/11/yolo11.yaml")  # 你要选择的模型yaml文件地址
    # Use the model
    results = model.train(data=r"你的数据集的yaml文件地址",
                          epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem)  # 训练模型

 🚀运行程序,如果出现下面的内容则说明添加成功🚀

                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  2                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  3                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  4                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  5                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  6                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 13                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1, False]
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 16                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]
 17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 19                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]
 20                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 23                  -1  1    577024  ultralytics.nn.modules.block.CoTAttention    [256]
 24        [16, 19, 23]  1    464912  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLO11_CoTAttention summary: 332 layers, 3,201,104 parameters, 3,201,088 gradients, 7.1 GFLOPs
wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

3.修改后的网络结构图

4. 完整代码分享

这个后期补充吧~,先按照步骤来即可

5. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLO11n GFLOPs

改进后的GFLOPs

6. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

7.总结

通过以上的改进方法,我们成功提升了模型的表现。这只是一个开始,未来还有更多优化和技术深挖的空间。在这里,我想隆重向大家推荐我的专栏——《YOLO11改进有效涨点》。这个专栏专注于前沿的深度学习技术,特别是目标检测领域的最新进展,不仅包含对YOLO11的深入解析和改进策略,还会定期更新来自各大顶会(如CVPR、NeurIPS等)的论文复现和实战分享。

为什么订阅我的专栏? ——《YOLO11改进有效涨点》

  1. 前沿技术解读:专栏不仅限于YOLO系列的改进,还会涵盖各类主流与新兴网络的最新研究成果,帮助你紧跟技术潮流。

  2. 详尽的实践分享:所有内容实践性也极强。每次更新都会附带代码和具体的改进步骤,保证每位读者都能迅速上手。

  3. 问题互动与答疑:订阅我的专栏后,你将可以随时向我提问,获取及时的答疑

  4. 实时更新,紧跟行业动态:不定期发布来自全球顶会的最新研究方向和复现实验报告,让你时刻走在技术前沿。

专栏适合人群:

  • 对目标检测、YOLO系列网络有深厚兴趣的同学

  • 希望在用YOLO算法写论文的同学

  • 对YOLO算法感兴趣的同学等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2208713.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【MySQL 保姆级教学】数据库基础(重点)(2)

目录 1. 什么是数据库1.1 数据库的定义1.2 mysql 和 mysqld1.3 文件和数据库 2. 数据库的分类3. 连接数据库3.1 数据库的安装3.2 连接服务器(数据库)3.3 服务器 数据库 表 三者的关系 4. 数据库-表 和目录-文件 的关系5. MySQL 框架6. SQL 分类7. 储存引…

人工智能AI等级划分

人工智能等级划分 第一级“聊天机器人”。 第二级“推理者”水平。这一级别的AI系统具备类似拥有博士学位教育但未配备任何工具的人类,能执行基础的问题解决任务。据悉,OpenAI的管理层在会议中还向员工们展示了涉及GPT-4 AI模型的一个研究项目&#xff…

【面试宝典】深入Python高级:直戳痛点的题目演示(下)

目录 🍔 Python下多线程的限制以及多进程中传递参数的⽅式 🍔 Python是如何进⾏内存管理的? 🍔 Python⾥⾯如何拷⻉⼀个对象? 🍔 Python⾥⾯search()和match()的区别? 🍔 lambd…

生成式专题的第一节课---GAN图像生成

一、GAN的起源与发展 1.GAN的起源 GAN (生成式对抗网络)诞生于 2014 年,由 Ian Goodfellow 提出,是用于生成数据的深度学习模型,创新点是对抗性训练,即生成器与判别器的竞争关系,为图像生成、…

多态常见面试问题

1、什么是多态? 多态(Polymorphism)是面向对象编程中的一个重要概念,它允许同一个接口表现出不同的行为。在C中,多态性主要通过虚函数来实现,分为编译时多态(静态多态)和运行时多态…

DDoS攻击快速增长,如何在抗ddos防护中获得主动?

当下DDoS攻击规模不断突破上限。前段时间,中国首款3A《黑神话:悟空》也在一夜之内遭受到28万次攻击DDoS攻击,严重影响到全球玩家的游戏体验。Gcore发布的数据也显示了 DDoS攻击令人担忧的趋势,尤其是峰值攻击已增加到了令人震惊的…

腾讯IM SDK:TUIKit发送多张图片

一、问题描述 在使用腾讯IM DEMO&#xff08;https://github.com/TencentCloud/chat-uikit-vue.git&#xff09;时发现其只支持发送一张图片&#xff1a; 二、解决方案 // src\TUIKit\components\TUIChat\message-input-toolbar\image-upload\index.vue<inputref"inp…

【GaussDB】产品简介

产品定位 GaussDB 200是一款具备分析及混合负载能力的分布式数据库&#xff0c;支持x86和Kunpeng硬件架构&#xff0c;支持行存储与列存储&#xff0c;提供PB(Petabyte)级数据分析能力、多模分析能力和实时处理能力&#xff0c;用于数据仓库、数据集市、实时分析、实时决策和混…

transformers和bert实现微博情感分类模型提升

关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有&#xff1a;中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等&#xff0c;曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝&#xff0c;拥有2篇国家级人工智能发明专利。 社区特色…

关于Linux下C++程序内存dump的分析和工具

前言 程序崩溃令人很崩溃&#xff0c;特别是让人找不到原因的崩溃&#xff0c;但是合适的工具可以帮助人很快的定位到问题&#xff0c;在AI基础能力ASR服务开发时&#xff0c;找到了一种比较实用和简单的内存崩溃的dump分析工具breakpad&#xff0c; 可以帮助在Linux下C开发程…

Skyeye 云智能制造 v3.14.8 发布,ERP 商城 + AI

Skyeye 云智能制造&#xff0c;采用 Springboot winUI 的低代码平台、移动端采用 UNI-APP。包含 30 多个应用模块、50 多种电子流程&#xff0c;CRM、PM、ERP、MES、ADM、EHR、笔记、知识库、项目、门店、商城、财务、多班次考勤、薪资、招聘、云售后、论坛、公告、问卷、报表…

(JAVA)2-3树思想与红黑树的实现与基本原理

1. 平衡树 ​ 学习过二叉查找树&#xff0c;发现它的查询效率比单纯的链表和数组的查询效率要高很多。 ​ 大部分情况下确实是这样的&#xff0c;但不幸的是&#xff0c;在最坏情况下&#xff0c;二叉查找树的性能还是很糟糕。 ​ 例如我们一次往二叉树中插入9,8,7,6,5,4,3,…

【LeetCode】动态规划—714. 买卖股票的最佳时机含手续费(附完整Python/C++代码)

动态规划—714. 买卖股票的最佳时机含手续费 题目描述前言基本思路1. 问题定义2. 理解问题和递推关系状态定义&#xff1a;状态转移公式&#xff1a;初始条件&#xff1a; 3. 解决方法动态规划方法伪代码&#xff1a; 4. 进一步优化5. 小总结 Python代码Python代码解释总结&…

出海电商新怎样用海外云手机引流?

随着互联网行业的迅猛发展&#xff0c;出海电商、海外社交媒体营销以及游戏产业等领域对技术工具的需求不断增加。在这种趋势下&#xff0c;海外云手机作为一种新型解决方案&#xff0c;正在受到广泛关注。 特别是在出海电商中&#xff0c;平台如亚马逊、速卖通、eBay等通过结合…

Mysql(八) --- 视图

文章目录 前言1.什么是视图&#xff1f;2.创建视图3. 使用视图4. 修改数据4.1.注意事项 5. 删除视图6.视图的优点 前言 前面我们学习了索引&#xff0c;这次我们来学习视图 1.什么是视图&#xff1f; 视图是一个虚拟的表&#xff0c;它是基于一个或多个基本表或其他视图的查询…

8款宝藏手机app,适配安卓和苹果手机

好用的手机APP太多&#xff0c;差点挑花了眼&#xff01;今天来分享4款苹果手机和4款安卓手机上的宝藏软件&#xff0c;看看你喜欢哪一款~ IOS系统APP 1.搜图神器 一款拥有海量图片资源的图片搜索神器&#xff0c;它聚合海内外知名搜索引擎&#xff0c;想要图片直接搜索就行…

用java来编写web界面

一、ssm框架整体目录架构 二、编写后端代码 1、编写实体层代码 实体层代码就是你的对象 entity package com.cv.entity;public class Apple {private Integer id;private String name;private Integer quantity;private Integer price;private Integer categoryId;public…

【JavaScript】LeetCode:61-65

文章目录 61 课程表62 实现Trie&#xff08;前缀树&#xff09;63 全排列64 子集65 电话号码的字母组合 61 课程表 Map BFS拓扑排序&#xff1a;将有向无环图转为线性顺序。遍历prerequisites&#xff1a;1. 数组记录每个节点的入度&#xff0c;2. 哈希表记录依赖关系。n 6&a…

Vulnhub靶场案例渗透[7]- DC7

文章目录 1. 靶场搭建2. 信息收集2.1 确定靶机ip2.2 服务信息收集2.3 社工信息收集 3. 提权 1. 靶场搭建 靶场源地址 检验下载文件的检验码&#xff0c;对比没问题使用vmware打开 # windwos 命令 Get-FileHash <filePath> -Algorithm MD5 # linux md5sum filepath2. 信…

视频汇聚平台EasyCVR支持云端录像丨监控存储丨录像回看丨录像计划丨录像配置

EasyCVR视频汇聚融合平台&#xff0c;是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。平台以其强大的视频处理、汇聚与融合能力&#xff0c;在构建视频监控系统中展现出了独特的优势。 EasyCVR视频汇聚平台可接入传统监控行业中高清网络摄像机的RTSP…