数学建模算法与应用 第11章 偏最小二乘回归及其方法

news2025/1/16 6:41:58

目录

11.1 偏最小二乘回归概述

11.2 Matlab 偏最小二乘回归命令

Matlab代码示例:偏最小二乘回归

11.3 案例分析:化学反应中的偏最小二乘回归

Matlab代码示例:光谱数据的PLS回归

习题 11

总结


  偏最小二乘回归(Partial Least Squares Regression, PLS)是一种用于分析多个自变量和因变量之间关系的多元统计方法,特别适用于当自变量之间存在多重共线性,或自变量数量大于样本数量的情况。PLS通过同时对自变量和因变量进行降维,提取出一组潜在变量来建立回归模型。本章将介绍偏最小二乘回归的基本概念、PLS在Matlab中的应用,以及典型案例分析。

11.1 偏最小二乘回归概述

  偏最小二乘回归通过将自变量和因变量同时投射到新的子空间中来解决多重共线性的问题。PLS模型可以看作是主成分分析和多元回归的结合:

  • 主成分提取:PLS从自变量和因变量中提取出潜在成分,以尽可能解释数据中的方差。

  • 降维与回归:PLS在降维的同时进行回归,保证提取的潜在成分对因变量的预测能力最强。

PLS适用于化学、经济、社会科学等领域,尤其是在自变量维数较高且存在多重共线性的情况下。

11.2 Matlab 偏最小二乘回归命令

  Matlab提供了plsregress函数用于执行偏最小二乘回归分析。通过这个函数,可以实现对自变量矩阵和因变量矩阵的回归建模。

Matlab代码示例:偏最小二乘回归
% 生成模拟数据
rng(0);
X = randn(100, 10);  % 自变量矩阵,有10个特征
Y = X(:,1) + 0.5 * X(:,2) - 0.3 * X(:,3) + randn(100, 1);  % 因变量,结合部分自变量生成

% 进行偏最小二乘回归,提取前3个成分
nComponents = 3;
[Xloadings, Yloadings, Xscores, Yscores, betaPLS, PCTVAR] = plsregress(X, Y, nComponents);

% 使用PLS模型对数据进行预测
Y_pred = [ones(size(X,1), 1) X] * betaPLS;

% 绘制预测结果与真实结果对比
figure;
plot(Y, Y_pred, 'o');
xlabel('真实值');
ylabel('预测值');
title('偏最小二乘回归预测结果');

  在上述代码中,我们生成了一组模拟数据,并使用plsregress函数对数据进行偏最小二乘回归分析,提取了3个潜在成分,并绘制了真实值和预测值的对比。

11.3 案例分析:化学反应中的偏最小二乘回归

  在化学分析中,偏最小二乘回归经常用于通过光谱数据预测化学物质的浓度。例如,可以通过光谱数据预测某化学物质的浓度,PLS在应对高度相关的光谱数据时效果尤为显著。

案例背景

  在化学反应中,光谱分析是一种重要的手段,用于测量反应物和产物的浓度。在光谱数据中,每个波长对应一个光谱强度值,但由于光谱数据通常包含大量的波长点,这些波长之间可能存在高度相关性,这使得传统的回归方法无法有效处理。PLS通过将光谱数据降维,提取最具代表性的潜在成分,从而实现对化学物质浓度的准确预测。

数据说明

  在本案例中,我们模拟了一组包含100个样本、50个波长点的光谱数据,以及一个因变量,代表某种化学物质的浓度。光谱数据的每一行代表一个样本在不同波长处的光谱强度。

Matlab代码示例:光谱数据的PLS回归
% 生成模拟光谱数据
X = randn(100, 50);  % 光谱数据,有50个波长点
Y = 0.8 * X(:,10) - 0.6 * X(:,20) + 0.4 * X(:,30) + randn(100, 1);  % 化学物质的浓度

% 进行偏最小二乘回归,提取前5个成分
nComponents = 5;
[Xloadings, Yloadings, Xscores, Yscores, betaPLS, PCTVAR] = plsregress(X, Y, nComponents);

% 使用PLS模型对数据进行预测
Y_pred = [ones(size(X,1), 1) X] * betaPLS;

% 绘制预测结果与真实浓度对比
figure;
plot(Y, Y_pred, 'o');
xlabel('真实浓度');
ylabel('预测浓度');
title('光谱数据的偏最小二乘回归预测');
结果分析

  从上述代码的结果中,可以看到PLS回归能够很好地捕捉光谱数据与化学物质浓度之间的关系。绘制的真实浓度与预测浓度的对比图表明,PLS模型可以有效地预测化学物质的浓度,尤其是在自变量数量远大于样本数量,且存在多重共线性的情况下。

  PLS模型的性能可以通过以下指标进行评估:

  • 预测误差(RMSE):可以计算预测值与真实值之间的均方根误差(RMSE),以衡量模型的预测精度。

  • 解释方差:通过提取的潜在成分解释的总方差,可以评估模型对数据的拟合程度。

Matlab代码示例:评估模型性能
% 计算均方根误差(RMSE)
rmse = sqrt(mean((Y - Y_pred).^2));

% 输出RMSE和解释方差
disp(['模型的均方根误差(RMSE):', num2str(rmse)]);
disp(['前5个成分解释的总方差(%):', num2str(sum(PCTVAR(2, 1:nComponents)) * 100)]);

  通过计算RMSE,我们可以得到模型的预测误差,这个值越小,表明模型的预测效果越好。此外,解释方差可以帮助我们理解提取的成分对因变量的影响程度。

习题 11

在第十一章结束后,提供了一些相关的习题,帮助读者深入理解偏最小二乘回归的应用。习题11包括:

  1. PLS建模:对一组模拟数据使用偏最小二乘回归进行建模,提取不同数量的潜在成分,并对比预测效果。

  2. 光谱分析应用:使用PLS对一组模拟的光谱数据进行分析,预测未知样本的浓度。

  3. 降维与回归:使用PLS对一组具有多重共线性的数据进行降维处理,并构建回归模型。

  4. 模型性能评估:对PLS模型进行评估,计算RMSE并分析提取成分对数据方差的解释能力。

通过这些习题,读者可以进一步掌握偏最小二乘回归在实际中的应用,以及如何利用Matlab工具进行PLS的建模和数据预测。

总结

  第十一章介绍了偏最小二乘回归的基本概念及其应用,包括PLS的理论基础、在Matlab中的实现方法以及具体的应用案例。偏最小二乘回归是一种非常有效的多元回归方法,尤其在自变量之间存在多重共线性的情况下,PLS能够同时实现降维和回归,是解决高维数据分析问题的有效工具。通过本章的学习,读者可以掌握PLS的基本原理和方法,并利用Matlab进行偏最小二乘回归的建模和应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2208359.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python字符编码详解!

本文简单介绍了各种常用的字符编码的特点,并介绍了在python2.x中如何与编码问题作战 :) 请注意本文关于Python的内容仅适用于2.x,3.x中str和unicode有翻天覆地的变化,请查阅其他相关文档。 文章开始前打个小广告——分…

ES创建文档,使用postman调用请求

请求的url 地址是http://192.168.1.108:9200/shopping/_doc,请求方式为post, 请求参数为: { "title":"小米手机", "category":"小米", "images":"http://www.gulixueyuan.com/xm.jpg", "price&…

系统移植一

使用设备是fs4412开发板 一、系统移植 系统移植是将一个操作系统或软件从一个硬件平台或处理器架构转移到另一个平台的过程。系统移植的主要目标是使软件在新的硬件环境下能够正常运行。在系统移植过程中,主要的改动集中在硬件相关的底层部分以及操作系统的核心模…

开源代码编译过程中遇到的问题(持续更新)

一、A-LOAM 地址:GitHub - HKUST-Aerial-Robotics/A-LOAM: Advanced implementation of LOAM 1.error: ‘LocalParameterization’ is not a member of ‘ceres 原因:ceres 版本的问题,A-LOAM 使用的 ceres 版本过低。如果安装的是 ceres 2.2…

大模型微调方法总结(非常详细)零基础入门到精通,收藏这一篇就够了

大模型训练代价很高,国盛证券出过一个报告《ChatGPT需要多少算力》,指出GPT3(175B)训练一次成本约140万刀,大概是1千万人民币。GPT3已经是2020年的历史了,现在的训练成本可能更高。高昂的训练成本小公司难以…

【ARM汇编速成】零基础入门汇编语言(ARM架构+汇编的实际应用)

目录 一.汇编的前世今生 二.寄存器 三.ARM指令集 1.指令格式 2.寻址方式 3.伪指令 4.基本指令 4.1数据传输指令 4.2存储器访问指令 4.3压栈和出栈指令 4.4跳转指令 4.5算术运算指令 4.6逻辑运算指令 四.C语言与汇编混合编程 1.混合编程前置条件 2.混合编程优势 3.…

活码的3步生成技巧,多种内容快速在线做成二维码

二维码在很多应用场景中都有应用,很多内容可以通过生成活码二维码的方法来提供内容展示。活码可以将多种不同内容给组合展示,而且可以随时在图案不变情况下修改内容,使用起来更加的灵活,常见的活码类型有文本、文件、音视频、图片…

Spring Boot在B2B医疗平台中的病历管理创新

第4章 系统设计 4.1 系统总体设计 系统不仅要求功能完善,而且还要界面友好,因此,对于一个成功的系统设计,功能模块的设计是关键。由于本系统可执行的是一般性质的学习信息管理工作,本系统具有一般适用性,其…

[Git] git stash命令详解

前言 目录 git stash -m git stash list git stash pop git stash apply index git stash drop index git stash clear 特定范围文件储存 git stash [-S|--staged] git stash [-u|--include-untracked] git stash [-a|--all] 将当前未提交的修改(即工作区和暂存区的修…

Go-知识依赖GOPATH

Go-知识依赖GOPATH 1. 介绍2. GOROOT 是什么3. GOPATH 是什么4. 依赖查找5. GOPATH 的缺点 1. 介绍 早期Go语言单纯地使用GOPATH管理依赖,但是GOPATH不方便管理依赖的多个版本,后来增加了vendor,允许把项目依赖 连同项目源码一同管理。Go 1.…

python发邮件附件:配置SMTP服务器与认证?

python发邮件附件技巧?Python发送多附件邮件的方法? Python作为一种强大的编程语言,提供了丰富的库和工具来实现这一功能。AokSend将深入探讨如何使用Python发邮件附件,并详细介绍配置SMTP服务器与认证的关键步骤。 python发邮件…

【CubeMLP】核心方法解读

abstract: 多模态情绪分析和抑郁估计是利用多模态数据预测人类心理状态的两个重要研究课题。以前的研究主要集中在开发有效的融合策略,以交换和整合来自不同模式的心智相关信息。一些基于mlp的技术最近在各种计算机视觉任务中取得了相当大的成功。受此启…

Pandas与JQData在量化投资中的应用:数据获取与处理函数详解

🌟作者简介:热爱数据分析,学习Python、Stata、SPSS等统计语言的小高同学~🍊个人主页:小高要坚强的博客🍓当前专栏:《Python之量化交易》🍎本文内容:Pandas与JQData在量化投资中的应用:数据获取与处理函数详解🌸作者“三要”格言:要坚强、要努力、要学习 目录 …

dvwa:暴力破解、命令注入、csrf全难度详解

暴力破解 easy模式 hydra -L /usr/share/wordlists/SecLists-master/Usernames/top-usernames-shortlist.txt -P /usr/share/wordlists/SecLists-master/Passwords/500-worst-passwords.txt 192.168.72.1 http-get-form "/dvwa/vulnerabilities/brute/:username^USER^&…

UDP和TCP的区别、网络编程(UDP回显服务器、TCP回显服务器)

目录 一、什么是网络编程 二、网络编程的内容概念 接受端和发送端 请求和响应 服务端和客户端 三、UDP和TCP协议的区别 四、UDP网络编程的类和函数(回显服务器) DatagramSocket DatagramPacket InetSocketAddress 基于UDP的回显服务器和客户…

​​​​​​​​​​Proxifier安装步骤

​​​​​​​​​​Proxifier ​​​​​​​​​​Proxifier下载连接 进入Proxifier官网后,点击下面按钮,下载安装包 下载完成后,打开压缩包 双击运行 选择试用 安装完成

Vue 3 全屏切换组件(附Demo)

目录 1. 基本知识2. 拓展3. 延伸 1. 基本知识 全屏 API document.documentElement.requestFullscreen():请求全屏模式 document.exitFullscreen():退出全屏模式 document.fullscreenElement:返回当前处于全屏状态的元素 基本的Demo如下&…

大模型进军医疗行业:实验揭示LLMs在临床建议中的表现

近年来,大型语言模型(LLMs)如GPT-4等以其强大的自然语言处理能力,引发了科技界和公众的广泛关注。随着技术的不断进步,越来越多的人开始探索将LLMs应用于医疗行业,以期提高医疗服务的效率和质量。然而&…

第170天:应急响应-战中溯源反制对抗上线CSGoby蚁剑Sqlmap等安全工具

目录 案例一:溯源反制-Webshell工具-Antsword 案例二:溯源反制-SQL注入工具-SQLMAP 案例三:溯源反制-漏洞扫描工具-Goby 案例四:溯源反制-远程控制工具-CobaltStrike 反制Server,爆破密码(通用&#x…

吴恩达演讲全文:AI Agent工作流的趋势

本文是吴恩达今年3月的演讲,题目为“Agentic Reasoning”,对AI Agent工作流的趋势进行了讲解。 本文对AI Agent翻译为了AI代理。 吴恩达指出,随着AI技术的发展,AI代理被视为一个能显著提升软件开发效率和质量的工具。 他通过展…