K8s-services+pod详解1

news2024/11/23 20:28:44

一、Service

我们能够利用Deployment创建一组Pod来提供具有高可用性的服务。

虽然每个Pod都会分配一个单独的Pod IP,然而却存在如下两问题:

  • Pod IP 会随着Pod的重建产生变化
  • Pod IP 仅仅是集群内可见的虚拟IP,外部无法访问

这样对于访问这个服务带来了难度。因此,Kubernetes设计了Service来解决这个问题。

Service可以看作是一组同类Pod对外的访问接口。借助Service,应用可以方便地实现服务发现和负载均衡

操作一:创建集群内部可访问的Service
# 创建一个pod控制器,后面需要
[root@master ~]# kubectl create deploy nginx --image=nginx --port=80 -n cc
deployment.apps/nginx created

# 暴露Service
[root@master ~]# kubectl expose deploy nginx --name=svc-nginx1 --type=ClusterIP --port=80 --target-port=80 -n cc
 
service/svc-nginx1 exposed

# 查看service
[root@master ~]# kubectl get svc svc-nginx1 -n cc -o wide
NAME         TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE   SELECTOR
svc-nginx1   ClusterIP   10.100.113.50   <none>        80/TCP    44s   app=nginx

这里产生了一个CLUSTER-IP,这就是Service的IP,在Service的生命周期中,这个地址是不会变动的。可以通过这个IP访问当前service对应的POD

[root@master ~]# curl 10.100.113.50:80
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
操作二:创建集群外部也可访问的Service

上面创建的Service的type类型为ClusterIP,这个ip地址只用集群内部可访问# 如果需要创建外部也可以访问的Service,需要修改type为NodePort

# 修改type为NodePort
[root@master ~]# kubectl expose deploy nginx --name=svc-nginx2 --type=NodePort --port=80 --target-port=80 -n cc
service/svc-nginx2 exposed

此时查看,会发现出现了NodePort类型的Service,而且有一对Port(80:31928/TC)

[root@master ~]# kubectl get svc svc-nginx2 -n cc -o wide
NAME         TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)        AGE   SELECTOR
svc-nginx2   NodePort   10.98.54.222   <none>        80:32031/TCP   12s   app=nginx

接下来就可以通过集群外的主机访问 节点IP:31928访问服务了# 例如在的电脑主机上通过浏览器访问下面的地址http://192.168.100.10:31928/

删除Service

[root@master ~]# kubectl delete svc svc-nginx1 -n cc
service "svc-nginx1" deleted
[root@master ~]# kubectl delete svc svc-nginx2 -n cc
service "svc-nginx2" deleted

yaml配置方式

创建一个svc-nginx.yaml,内容如下:

apiVersion: v1
kind: Service
metadata:
  name: svc-nginx
  namespace: cc
spec:
  clusterIP: 10.109.179.231 #固定svc的内网ip
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    run: nginx
  type: ClusterIP

然后就可以执行对应的创建和删除命令了:

创建:kubectl create -f svc-nginx.yaml

删除:kubectl delete -f svc-nginx.yaml

二、pod详解

pod的资源清单
apiVersion: v1     #必选,版本号,例如v1
kind: Pod         #必选,资源类型,例如 Pod
metadata:         #必选,元数据
  name: string     #必选,Pod名称
  namespace: string  #Pod所属的命名空间,默认为"default"
  labels:           #自定义标签列表
    - name: string                 
spec:  #必选,Pod中容器的详细定义
  containers:  #必选,Pod中容器列表
  - name: string   #必选,容器名称
    image: string  #必选,容器的镜像名称
    imagePullPolicy: [ Always|Never|IfNotPresent ]  #获取镜像的策略 
    command: [string]   #容器的启动命令列表,如不指定,使用打包时使用的启动命令
    args: [string]      #容器的启动命令参数列表
    workingDir: string  #容器的工作目录
    volumeMounts:       #挂载到容器内部的存储卷配置
    - name: string      #引用pod定义的共享存储卷的名称,需用volumes[]部分定义的的卷名
      mountPath: string #存储卷在容器内mount的绝对路径,应少于512字符
      readOnly: boolean #是否为只读模式
    ports: #需要暴露的端口库号列表
    - name: string        #端口的名称
      containerPort: int  #容器需要监听的端口号
      hostPort: int       #容器所在主机需要监听的端口号,默认与Container相同
      protocol: string    #端口协议,支持TCP和UDP,默认TCP
    env:   #容器运行前需设置的环境变量列表
    - name: string  #环境变量名称
      value: string #环境变量的值
    resources: #资源限制和请求的设置
      limits:  #资源限制的设置
        cpu: string     #Cpu的限制,单位为core数,将用于docker run --cpu-shares参数
        memory: string  #内存限制,单位可以为Mib/Gib,将用于docker run --memory参数
      requests: #资源请求的设置
        cpu: string    #Cpu请求,容器启动的初始可用数量
        memory: string #内存请求,容器启动的初始可用数量
    lifecycle: #生命周期钩子
        postStart: #容器启动后立即执行此钩子,如果执行失败,会根据重启策略进行重启
        preStop: #容器终止前执行此钩子,无论结果如何,容器都会终止
    livenessProbe:  #对Pod内各容器健康检查的设置,当探测无响应几次后将自动重启该容器
      exec:         #对Pod容器内检查方式设置为exec方式
        command: [string]  #exec方式需要制定的命令或脚本
      httpGet:       #对Pod内个容器健康检查方法设置为HttpGet,需要制定Path、port
        path: string
        port: number
        host: string
        scheme: string
        HttpHeaders:
        - name: string
          value: string
      tcpSocket:     #对Pod内个容器健康检查方式设置为tcpSocket方式
         port: number
       initialDelaySeconds: 0       #容器启动完成后首次探测的时间,单位为秒
       timeoutSeconds: 0          #对容器健康检查探测等待响应的超时时间,单位秒,默认1秒
       periodSeconds: 0           #对容器监控检查的定期探测时间设置,单位秒,默认10秒一次
       successThreshold: 0
       failureThreshold: 0
       securityContext:
         privileged: false
  restartPolicy: [Always | Never | OnFailure]  #Pod的重启策略
  nodeName: <string> #设置NodeName表示将该Pod调度到指定到名称的node节点上
  nodeSelector: obeject #设置NodeSelector表示将该Pod调度到包含这个label的node上
  imagePullSecrets: #Pull镜像时使用的secret名称,以key:secretkey格式指定
  - name: string
  hostNetwork: false   #是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络
  volumes:   #在该pod上定义共享存储卷列表
  - name: string    #共享存储卷名称 (volumes类型有很多种)
    emptyDir: {}       #类型为emtyDir的存储卷,与Pod同生命周期的一个临时目录。为空值
    hostPath: string   #类型为hostPath的存储卷,表示挂载Pod所在宿主机的目录
      path: string                #Pod所在宿主机的目录,将被用于同期中mount的目录
    secret:          #类型为secret的存储卷,挂载集群与定义的secret对象到容器内部
      scretname: string  
      items:     
      - key: string
        path: string
    configMap:         #类型为configMap的存储卷,挂载预定义的configMap对象到容器内部
      name: string
      items:
      - key: string
        path: string

在这里,可通过一个命令来查看每种资源的可配置项#   kubectl explain 资源类型         

查看某种资源可以配置的一级属性#   kubectl explain 资源类型.属性     查看属性的子属性

[root@k8s-master01 ~]# kubectl explain pod
KIND:     Pod
VERSION:  v1
FIELDS:
   apiVersion   <string>
   kind <string>
   metadata     <Object>
   spec <Object>
   status       <Object>

# 查看子属性

[root@k8s-master01 ~]# kubectl explain pod.metadata
KIND:     Pod
VERSION:  v1
RESOURCE: metadata <Object>
FIELDS:
   annotations  <map[string]string>
   clusterName  <string>
   creationTimestamp    <string>
   deletionGracePeriodSeconds   <integer>
   deletionTimestamp    <string>
   finalizers   <[]string>
   generateName <string>
   generation   <integer>
   labels       <map[string]string>
   managedFields        <[]Object>
   name <string>
   namespace    <string>
   ownerReferences      <[]Object>
   resourceVersion      <string>
   selfLink     <string>
   uid  <string>

在kubernetes中基本所有资源的一级属性都是一样的,主要包含5部分

1、apiVersion 版本,由kubernetes内部定义,版本号必须可以用 kubectl api-versions 查询到

2、kind 类型,由kubernetes内部定义,版本号必须可以用 kubectl api-resources 查询到

3、metadata 元数据,主要是资源标识和说明,常用的有name、namespace、labels等

4、spec描述,这是配置中最重要的一部分,里面是对各种资源配置的详细描述

5、status状态信息,里面的内容不需要定义,由kubernetes自动生成

上面的属性中,spec是接下来研究的重点,继续看下它的常见子属性:

1、containers <[]Object> 容器列表,用于定义容器的详细信息

2、nodeName 根据nodeName的值将pod调度到指定的Node节点上

3、nodeSelector <map[]> 根据NodeSelector中定义的信息选择将该Pod调度到包含这些label的Node 上

4、hostNetwork 是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络

5、volumes <[]Object> 存储卷,用于定义Pod上面挂载的存储信息

6、restartPolicy 重启策略,表示Pod在遇到故障的时候的处理策略

pod配置

本小节主要来研究pod.spec.containers属性,这也是pod配置中最为关键的一项配置。

[root@master01 ~]# kubectl explain pod.spec.containers
KIND:     Pod
VERSION:  v1
RESOURCE: containers <[ ]Object>   # 数组,代表可以有多个容器
FIELDS:
   name  <string>     # 容器名称
   image <string>     # 容器需要的镜像地址
   imagePullPolicy  <string> # 镜像拉取策略 
   command  <[ ]string> # 容器的启动命令列表,如不指定,使用打包时使用的启动命令
   args     <[ ]string> # 容器的启动命令需要的参数列表
   env      <[ ]Object> # 容器环境变量的配置
   ports    <[ ]Object>     # 容器需要暴露的端口号列表
   resources <Object>      # 资源限制和资源请求的设置
基本配置

创建pod-base.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: pod-base
  namespace: test
  labels:
    user: user1
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
  - name: busybox
image: busybox:1.30

上面定义了一个比较简单Pod的配置,里面有两个容器:

nginx:用1.17.1版本的nginx镜像创建,(nginx是一个轻量级web容器)

busybox:用1.30版本的busybox镜像创建,(busybox是一个小巧的linux命令集合)

[root@master ~]# kubectl create -f pod-base.yaml 
pod/pod-base created
[root@master ~]# kubectl get pod -n test
NAME       READY   STATUS              RESTARTS   AGE
pod-base   0/2     ContainerCreating   0          12s
镜像拉取

创建pod-imagepullpolicy.yaml文件:

apiVersion: v1
kind: Pod
metadata:
  name: pod-imagepullpolicy
  namespace: test
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    imagePullPolicy: Never
  - name: busybox
image: busybox:1.30

imagePullPolicy,用于设置镜像拉取策略,kubernetes支持配置三种拉取策略:

  • Always:总是从远程仓库拉取镜像(一直远程下载)
  • IfNotPresent:本地有则使用本地镜像,本地没有则从远程仓库拉取镜像(本地有就本地 本地没远程下载)
  • Never:只使用本地镜像,从不去远程仓库拉取,本地没有就报错 (一直使用本地)

默认值说明:

如果镜像tag为具体版本号, 默认策略是:IfNotPresent

如果镜像tag为:latest(最终版本) ,默认策略是always

启动命令

在前面的案例中,一直有一个问题没有解决,就是的busybox容器一直没有成功运行,那么到底是什么原因导致这个容器的故障呢?

原来busybox并不是一个程序,而是类似于一个工具类的集合,kubernetes集群启动管理后,它会自动关闭。解决方法就是让其一直在运行,这就用到了command配置。

创建pod-command.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: pod-command1
  namespace: test
spec:
  containers:
  - name: nginx
   image: nginx:1.17.1
   imagePullPolicy: Never
  - name: busybox
image: busybox:1.30
imagePullPolicy: Never
command: ["/bin/sh","-c","touch /tmp/hello.txt;while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done;"]

command,用于在pod中的容器初始化完毕之后运行一个命令。

稍微解释下上面命令的意思:

“/bin/sh”,“-c”, 使用sh执行命令;

touch /tmp/hello.txt; 创建一个/tmp/hello.txt 文件;

while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done; 每隔3秒向文件中写入当前时间。

此时再去查看

[root@master ~]# kubectl create -f pod-command.yaml 
pod/pod-command1 created
[root@master ~]# kubectl get pods -n test
pod-command1           2/2     Running             0               2s

进入pod中的busybox容器,查看文件内容

补充一个命令: kubectl exec  pod名称 -n 命名空间 -it -c 容器名称 /bin/sh  在容器内部执行命令

使用这个命令就可以进入某个容器的内部,然后进行相关操作了

比如,可以查看txt文件的内容

[root@master ~]# kubectl exec pod-command1 -n test -it -c busybox /bin/sh
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl exec [POD] -- [COMMAND] instead.
/ # tail -f /tmp/hello.txt
17:22:11
17:22:14
17:22:17
17:22:20
17:22:23
17:22:26

特别说明:

        通过上面发现command已经可以完成启动命令和传递参数的功能,为什么这里还要提供一个args选项,用于传递参数呢?这其实跟docker有点关系,kubernetes中的command、args两项其实是实现覆盖Dockerfile中ENTRYPOINT的功能。

  • 如果command和args均没有写,那么用Dockerfile的配置。
  • 如果command写了,但args没有写,那么Dockerfile默认的配置会被忽略,执行输入的command。
  • 如果command没写,但args写了,那么Dockerfile中配置的ENTRYPOINT的命令会被执行,使用当前args的参数。
  • 如果command和args都写了,那么Dockerfile的配置被忽略,执行command并追加上args参数。
环境变量

创建pod-env.yaml文件:

apiVersion: v1
kind: Pod
metadata:
  name: pod-env
  namespace: test
spec:
  containers:
  - name: busybox
    image: busybox:1.30
    imagePullPolicy: Never
    command: ["/bin/sh","-c","while true;do /bin/echo $(date +%T);sleep 60; done;"]
    env:
    - name: "username"
      value: "admin"
    - name: "password"
      value: "redhat"

env,环境变量,用于在pod中的容器设置环境变量

[root@master ~]# kubectl create -f pod-env.yaml 
pod/pod-env created
pod-env                1/1     Running            0               16s
[root@master ~]# kubectl exec pod-env -n test -c busybox -it /bin/sh
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl exec [POD] -- [COMMAND] instead.
/ # echo $username
admin
/ # echo $password
redhat
/ #

这种方式不是很推荐,推荐将这些配置单独存储在配置文件中,这种方式将在以后介绍。

端口配置

现在来介绍容器的端口设置,也就是containers的ports选项。

首先看下ports支持的子选项:

[root@k8s-master01 ~]# kubectl explain pod.spec.containers.ports
KIND:     Pod
VERSION:  v1
RESOURCE: ports <[ ]Object>
FIELDS:
   name         <string>  # 端口名称,如果指定,必须保证name在pod中是唯一的		
   containerPort<integer> # 容器要监听的端口(0<x<65536)
   hostPort     <integer> # 容器要在主机上公开的端口,如果设置,主机上只能运行容器的一个副本(一般省略) 
   hostIP       <string>  # 要将外部端口绑定到的主机IP(一般省略)
   protocol     <string>  # 端口协议。必须是UDP、TCP或SCTP。默认为“TCP”

接下来,编写一个测试案例,创建pod-ports.yaml:

apiVersion: v1
kind: Pod
metadata:
  name: pod-ports
  namespace: test
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    imagePullPolicy: Never
    ports:
    - name: nginx-port
      containerPort: 80
      protocol: TCP

[root@master ~]# kubectl create -f pod-ports.yaml 
pod/pod-ports created
[root@master ~]# kubectl get pod -n test
pod-ports              1/1     Running            0                10s

# 查看
[root@master ~]# kubectl get pod pod-ports -n test -o yaml
......
spec:
  containers:
  - image: nginx:1.17.1
    imagePullPolicy: Never
    name: nginx
    ports:
    - containerPort: 80
      name: nginx-port
      protocol: TCP

访问容器中的程序需要使用的是Podip:containerPort

[root@master ~]# kubectl get pod pod-ports -n test -o wide
NAME        READY   STATUS    RESTARTS   AGE     IP            NODE    NOMINATED NODE   READINESS GATES
pod-ports   1/1     Running   0          3m40s   10.244.1.16   node1   <none>           <none>
[root@master ~]# curl http://10.244.1.16:80
资源配额

容器中的程序要运行,肯定是要占用一定资源的,比如cpu和内存等,如果不对某个容器的资源做限制,那么它就可能吃掉大量资源,导致其它容器无法运行。针对这种情况,kubernetes提供了对内存和cpu的资源进行配额的机制,这种机制主要通过resources选项实现,他有两个子选项:

  • limits:用于限制运行时容器的最大占用资源,当容器占用资源超过limits时会被终止,并进行重启
  • requests :用于设置容器需要的最小资源,如果环境资源不够,容器将无法启动

可以通过上面两个选项设置资源的上下限。

接下来,编写一个测试案例,创建pod-resources.yaml:

apiVersion: v1
kind: Pod
metadata:
  name: pod-resources
  namespace: test
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    imagePullPolicy: Never
    resources:       //资源限制
      limits:     //资源限制(上限)
        cpu: "2"     //cpu限制,单位是core数
        memory: "10Gi"   //内存限制
      requests:     //请求资源
        cpu: "1"     
        memory: "10Mi"

在这对cpu和memory的单位做一个说明:

  • cpu:core数,可以为整数或小数
  • memory: 内存大小,可以使用Gi、Mi、G、M等形式
[root@master ~]# kubectl create -f pod-resources.yaml 
pod/pod-resources created
[root@master ~]# kubectl get pods -n test
pod-resources          1/1     Running            0                10s

先停止删除该pod

[root@master ~]# kubectl delete -f pod-resources.yaml 
pod "pod-resources" deleted

再编辑pod,修改resources.requests.memory的值为10Gi

[root@master ~]# vim pod-resources.yaml

[root@master ~]# kubectl create -f pod-resources.yaml
pod/pod-resources created
[root@master ~]# kubectl get pods -n test
pod-resources          0/1     Pending            0                16s

# 查看详细信息
[root@master ~]# kubectl describe pod pod-resources -n test
Warning  FailedScheduling  87s   default-scheduler  0/3 nodes are available: 1 node(s) had untolerated taint {node-role.kubernetes.io/control-plane: }, 3 Insufficient memory. preemption: 0/3 nodes are available: 1 Preemption is not helpful for scheduling, 2 No preemption victims found for incoming pod.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2208309.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【干货】2024新学期期中考试,老师成绩发布工具

老师们别再为期中发成绩发愁了&#xff0c;我给各位带来了一个解决方案——易查分小程序&#xff0c;它可以将彻底改变您发布成绩的方式&#xff01;一分钟发布期中考试成绩。不管您是教育界的新手还是老手&#xff0c;易查分都能成为您的得力助手。它的界面既美观又实用&#…

大数据毕业设计选题推荐-音乐数据分析系统-音乐推荐系统-Python数据可视化-Hive-Hadoop-Spark

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

一些近期值得关注的存储和备份潜在漏洞

时刻保持警惕&#xff0c;及时、适时地检测暴露于安全建议和警告的相关设备&#xff0c;这一点对企业数据安全再重要不过了。 Continuity调研指出了最近几个月&#xff0c;存储和备份解决方案中存在的、可被攻击者发现和利用的潜在漏洞&#xff0c;包括&#xff1a; Veeam Ba…

YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

必读内容&#x1f4d6; 如何寻找创新点&#xff1f;为什么要使用这个模块&#xff1f;如何才能提升模型的精度&#xff1f;这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了&#xff0c;这已经省去了大部分时间&#xff0c;但是当我们使用这些新的模块去优化已有…

LDR6500取电诱骗协议芯片:革新电子设备充电体验

在当今电子设备日新月异的时代&#xff0c;Type-C接口以其高效、便捷的特点迅速成为市场主流。这一接口不仅支持高速数据传输&#xff0c;还实现了正反插拔的便利性&#xff0c;极大地提升了用户体验。然而&#xff0c;在Type-C接口的广泛应用背后&#xff0c;一个关键的技术组…

Java日常开发小结-01

一、fastjson2 FastJson对于json格式字符串的解析主要用到三个类1.JSON&#xff1a;解析器&#xff0c;用于JSON格式字符串与JSON对象及javaBean之间的转换 2.JSONObject&#xff1a;json对象 3.JSONArray&#xff1a; json数组对象 1.1、引入依赖 <dependency><gr…

雷池社区版本SYSlog使用教程

雷池会对恶意攻击进行拦截&#xff0c;但是日志都在雷池机器上显示 如何把日志都同步到相关设备进行统一的管理和分析呢&#xff1f; 如需将雷池攻击日志实时同步到第三方服务器, 可使用雷池的 Syslog 外发 功能 启用 Syslog 外发 进入雷池 系统设置 页面, 配置 Syslog 设置…

基于单片机的公交车自动报站器设计

本设计是以STM32单片机为控制核心的公交车自动报站系统&#xff0c;该系统的主要构成模块有&#xff1a;控制核心模块、GPS模块、温度模块、语音模块、按键控制模块和显示模块。采用点阵显示屏&#xff0c;可自动显示下一站&#xff0c;使用OLED显示器显示温度和经纬度&#xf…

免费使用Cursor, 切换DeepSeek模型

1. 选择设置 直接点击右上角的齿轮图标 或 者通过文件-->首选项-->Cursor Settings 2. 添加模型 点击Models→Add model 添加模型→添加Deepseek的模型名称&#xff1a;deepseek-coder 和 deepseek-chat→注意&#xff1a;模型名一定不能输错&#xff01;&#xff…

2024年区块链钱包现状与未来趋势分析

钱包作为Web3世界的入口&#xff0c;充当了用户与区块链应用交互、管理资金和传递信息的关键工具。随着区块链技术的发展&#xff0c;钱包生态系统日益多样化&#xff0c;涌现出大量不同类型的解决方案。这些解决方案不仅极大地改善了用户体验&#xff0c;还推动了区块链技术和…

鸿蒙HarmonyOS开发:应用权限的基本概念及如何申请应用权限详细介绍

文章目录 一、访问控制二、应用权限1、应用权限管控2、权限使用的基本原则3、授权方式4、权限等级 三、申请应用权限1、选择申请权限的方式2、声明权限3、声明样例4、二次向用户申请授权5、具体实现示例6、效果展示 四、应用权限列表1、system_grant&#xff08;系统授权&#…

基于FPGA的以太网设计(二)

一.以太网硬件架构概述 前文讲述了以太网的一些相关知识&#xff0c;本文将详细讲解以太网的硬件架构 以太网的电路架构一般由MAC、PHY、变压器、RJ45和传输介质组成&#xff0c;示意图如下所示&#xff1a; PHY&#xff1a;Physical Layer&#xff0c;即物理层。物理层定义了…

三、异步加载场景

一、加载场景实现 1、加载进度条方法 在加载场景这个预制体面板上挂在一个代码 LoadingWnd 先对组件进行声明包括&#xff08;一个进度条上的文字、提示组件&#xff08;进度条位置&#xff09;、进度点、进度百分比&#xff09; 使用进度条&#xff0c;首先要初始化一下&am…

使用Docker搭建WAF-开源Web防火墙VeryNginx

1、说明 VeryNginx 基于 lua_nginx_module(openrestry) 开发,实现了防火墙、访问统计和其他的一些功能。 集成在 Nginx 中运行,扩展了 Nginx 本身的功能,并提供了友好的 Web 交互界面。 文章目录 1、说明1.1、基本概述1.2、主要功能1.3、应用场景2、拉取镜像3、配置文件4、…

SVM及其实践2 --- 对典型数据集的多分类实践

说明 本文为SVM系列的第二篇文章&#xff0c;主要是基于SVM对两份公开数据集的分类实践。建议读者在阅读本文前先看看本系列的第一篇博文[1]: SVM及其实践1 --- 概念、理论以及二分类实践-CSDN博客 Blog 2024.10.6 本文第一次撰写 目录 说明 目录 一、Iris数据集以及基于S…

Qt-链接数据库可视化操作

1. 概述 Qt 能够支持对常见数据库的操作&#xff0c;例如&#xff1a; MySQL、Oracle、SqlServer 等等。 Qt SQL模块中的API分为三层&#xff1a;驱动层、SQL接口层、用户接口层。 驱动层为数据库和SQL接口层之间提供了底层的桥梁。 SQL接口层提供了对数据库的访问&#xff0…

【源码+文档+调试讲解】基于安卓的小餐桌管理系统springboot框架

摘 要 相比于以前的传统手工管理方式&#xff0c;智能化的管理方式可以大幅降低运营人员成本&#xff0c;实现了小餐桌的标准化、制度化、程序化的管理&#xff0c;有效地防止了小餐桌的随意管理&#xff0c;提高了信息的处理速度和精确度&#xff0c;能够及时、准确地查询和修…

vue+ElementUI—实现基础后台管理布局(sideBar+header+appMain)(附源码)

后台管理的模板很多&#xff0c;vue本身就提供了完整的vue-template-admin&#xff0c;vue-admin-beautiful等后台管理系统化框架&#xff0c;但是这些框架正是因为成体系而显得繁重。假如你想搭建一个静态的后台管理模板页面和几个单独的菜单页面&#xff0c;直接就上框架是否…

学习 PostgreSQL + Spring Boot 3 +mybatisplus整合过程中的报错记录

今天计划学习 PostgreSQL&#xff0c;并顺便尝试使用 Spring Boot 3.x 框架&#xff0c;打算整合 Spring Boot 3、PostgreSQL 和 MyBatis-Plus。整合后一直出现以下报错&#xff1a; 去AI上面搜了讲的是sqlSessionFactory 或 sqlSessionTemplate 没有正确配置 初始分析&#…

MySQL-01.课程介绍

一.什么是数据库 二.数据库产品 三.课程安排