Section 1.1
T12
😉
S
o
l
v
e
👇
Solve👇
Solve👇
x
x
x
1
1
1-
3
x
3x
3x
2
2
2
+
4
x
+4x
+4x
3
3
3
=
−
4
=-4
=−4
3
x
3x
3x
1
1
1
−
7
x
-7x
−7x
2
2
2
+
7
x
+7x
+7x
3
3
3
=
−
8
=-8
=−8
−
4
x
-4x
−4x
1
1
1
+
6
x
+6x
+6x
2
2
2
−
x
-x
−x
3
3
3
=
7
=7
=7
😱 n o S o l u t i o n ! 😱noSolution! 😱noSolution!
T16
😉
S
o
l
v
e
👇
Solve👇
Solve👇
x
x
x
1
1
1
−
2
x
-2x
−2x
4
4
4
=
−
3
=-3
=−3
2
x
2x
2x
2
2
2
+
2
x
+2x
+2x
3
3
3
=
0
=0
=0
x
x
x
3
3
3
+
3
x
+3x
+3x
4
4
4
=
1
=1
=1
−
2
x
-2x
−2x
1
1
1
+
3
x
+3x
+3x
2
2
2
+
2
x
+2x
+2x
3
3
3
+
x
+x
+x
4
4
4
=
5
=5
=5
T20
🤔
W
h
a
t
What
What
c
a
n
can
can
h
h
h
b
e
?
be?
be?
[
1
h
−
3
−
2
4
6
]
\left[ \begin{matrix} 1 & h & -3\\ -2 & 4 &6 \\ \end{matrix} \right]
[1−2h4−36]
T28
a
≠
0
,🤔
S
a
y
A
b
o
u
t
A
B
C
a
n
d
D
a≠0,🤔SayAbout A B C and D
a=0,🤔SayAboutABCandD
a
x
ax
ax
1
1
1
+
b
x
+bx
+bx
2
2
2
=
f
=f
=f
c
x
cx
cx
1
1
1
+
d
x
+dx
+dx
2
2
2
=
g
=g
=g
A
N
S
ANS
ANS
a
d
≠
b
c
ad≠bc
ad=bc
P
r
o
o
f
:
Proof:
Proof:
The consistency of a linear system of equations depends on the existence and uniqueness of its solutions.
If the system has a unique solution, then the system is considered consistent; if the system has no solution or infinitely many solutions, then the system is considered inconsistent.
T30
🙃
T
r
a
n
s
f
o
r
m
M
a
t
r
i
x
1
👉
M
a
t
r
i
x
2
🙃TransformMatrix1👉Matrix2
🙃TransformMatrix1👉Matrix2
[
1
3
−
4
0
−
2
6
0
−
5
9
]
\left[ \begin{matrix} 1 & 3 & -4\\ 0 & -2 & 6\\ 0 & -5 & 9\\ \end{matrix} \right]
1003−2−5−469
👇and👆
[
1
3
−
4
0
1
−
3
0
−
5
9
]
\left[ \begin{matrix} 1 & 3 & -4\\ 0 & 1 & -3\\ 0 & -5 & 9\\ \end{matrix} \right]
10031−5−4−39
A
N
S
ANS
ANS
M1’s Row2*(-1/2) ->M2
M2’s Row2*(-2) ->M1