【spring ai】java 实现RAG检索增强,超快速入门

news2024/11/27 21:06:18

rag结果

rag 需求产生的背景介绍:

在使用大模型时,一个常见的问题是模型会产生幻觉(即生成的内容与事实不符),同时由于缺乏企业内部数据的支持,导致其回答往往不够精准和具体,偏向于泛泛而谈。这些问题限制了大模型直接应用于特定业务场景的效果。通过引入RAG (Retrieval-Augmented Generation)机制,可以结合外部知识库或私有数据源来提高生成内容的准确性和相关性,有效缓解上述问题。

基于spring ai来做rag的优势介绍

我们使用了Spring AI来做检索增强,因为过去用Java写AI应用时面临的主要困境是没有标准的封装。现在Spring推出了Spring AI,它提供了一套可以兼容市面上主要生成任务的接口,极大地方便了开发工作。Spring AI不仅支持阿里云的通义大模型等服务,还能够通过简单的配置切换不同的AI提供商,使得开发者可以更加专注于业务逻辑而无需过多关注底层实现细节。这种标准化和模块化的设计,让Spring AI成为了构建AI应用程序的理想选择。

Spring AI alibaba介绍

Spring AI Alibaba 是一个针对 Spring AI 的实现,基于阿里云百炼系列云产品提供大模型接入。它主要支持包括对话、文生图、文生语音等在内的多种生成式AI功能,并且能够兼容市面上大部分基于流的机器人模型。通过使用 Spring AI Alibaba,开发者可以轻松地将这些强大的AI能力集成到自己的Java应用程序中。其核心优势在于提供了统一且标准化的接口来访问不同的AI服务提供商(如OpenAI、Azure和阿里云),从而减少了因切换不同服务商而带来的开发工作量。此外,Spring AI Alibaba 还支持通过简单的配置即可调整使用的具体模型,比如用于绘画或图像生成的通义万象模型,极大简化了AI应用开发流程。

检索增强的后端代码编写

为了通过检索增强的方式读取一个阿里巴巴的财务报表PDF,并对外提供服务,基于提供的知识内容,首先需要理解RAG(检索增强生成)的基本概念和技术实现。这里采用的是阿里云百炼平台与Spring AI Alibaba集成的技术栈来完成这个需求。下面将详细介绍具体的配置和代码实现步骤。

一、环境准备

  1. 确保JDK版本:必须使用JDK 17或更高版本。
  2. Spring Boot版本:项目应基于Spring Boot 3.3.x 版本。
  3. 获取API Key:访问阿里云百炼页面,按照指引开通“百炼大模型推理”服务后创建并保存好API key。
  4. 设置环境变量:在你的开发环境中设置AI_DASHSCOPE_API_KEY为刚才获得的API key值。
  5. 项目依赖配置
    • 添加额外的Maven仓库以支持spring ai alibaba starter 的引入。
    • 在pom.xml中加入spring ai alibaba starter以及指定Spring Boot的父级项目。
<repositories>
    <repository>
        <id>sonatype-snapshots</id>
        <url>https://oss.sonatype.org/content/repositories/snapshots</url>
        <snapshots>
            <enabled>true</enabled>
        </snapshots>
    </repository>
    <repository>
        <id>spring-milestones</id>
        <name>Spring Milestones</name>
        <url>https://repo.spring.io/milestone</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
    <repository>
        <id>spring-snapshots</id>
        <name>Spring Snapshots</name>
        <url>https://repo.spring.io/snapshot</url>
        <releases>
            <enabled>false</enabled>
        </releases>
    </repository>
</repositories>

<dependencies>
    <dependency>
        <groupId>com.alibaba.cloud.ai</groupId>
        <artifactId>spring-ai-alibaba-starter</artifactId>
        <version>1.0.0-M2.1</version>
    </dependency>
    <!-- Spring Boot Parent -->
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.3.4</version>
    </parent>
    ...other dependencies...
</dependencies>

二、服务端代码实现

根据上述配置完成后,接下来是具体的服务端逻辑编写,主要包括构建索引和查询两个部分。

1. 构建索引

此步骤用于从给定的PDF文件中提取文档数据并将其转换为向量存储到VectorStore中。只需要首次运行时调用一次。

public String buildIndex() {
    String filePath = "/path/to/your/alibaba_financial_report.pdf";
    DocumentReader reader = new DashScopeDocumentCloudReader(filePath, dashscopeApi, null);
    List<Document> documentList = reader.get();
    vectorStore.add(documentList);
    return "SUCCESS";
}
2. 提供查询接口

客户端可通过GET请求向/ai/steamChat发送消息参数input,服务器将返回基于上下文信息生成的回答。

@GetMapping("/steamChat")
public Flux<String> generate(@RequestParam("input") String message, HttpServletResponse httpResponse) {
    StreamResponseSpec chatResponse = ragService.queryWithDocumentRetrieval(message);
    httpResponse.setCharacterEncoding("UTF-8");
    return chatResponse.content();
}

三、启动应用并测试

完成以上步骤后,启动Spring Boot应用。第一次运行时,请先访问http://localhost:8080/ai/buildIndex来初始化索引。之后就可以通过访问http://localhost:8080/ai/steamChat?input=您的问题来进行问答了。

这样,我们就完成了基于RAG技术对阿里巴巴财务报告PDF文件的处理,并且能够通过简单的HTTP接口进行交互式问答。

检索增强的前端代码编写

基于我了解的信息中的内容,我们将使用React构建一个前端项目,该项目能够通过流式方式从前端向后端发送请求,并接收后端返回的flux<String>数据。根据题目要求,后端接口URL为http://localhost:8080/ai/steamChat?input=…,该接口会返回基于检索增强生成的内容。

构建并配置React项目

首先,确保你的开发环境已经安装了Node.js和npm(或yarn)。然后按照以下步骤创建一个新的React应用:

npx create-react-app frontend
cd frontend
npm install

此命令将帮助你快速搭建起基础的React项目结构,并自动安装所有必需的依赖项。

接下来,在public/index.html中保持默认设置即可,因为这个文件主要用于定义基本HTML文档结构。

修改关键组件

src/App.js中引入我们即将编写的聊天组件ChatComponent

import React from 'react';
import ChatComponent from './components/ChatComponent';

function App() {
  return (
    <div className="App">
      <ChatComponent />
    </div>
  );
}

export default App;

然后,我们需要重点实现src/components/ChatComponent.js,这是整个交互的核心所在。在这个组件里,我们将实现输入框、发送消息按钮以及展示从服务器接收到的消息的功能。

import React, { useState } from 'react';

function ChatComponent() {
  const [input, setInput] = useState('');
  const [messages, setMessages] = useState('');

  const handleInputChange = (event) => {
    setInput(event.target.value);
  };

  const handleSendMessage = async () => {
    if (!input.trim()) return; // 确保不发送空消息
    
    try {
      const response = await fetch(`http://localhost:8080/ai/steamChat?input=${encodeURIComponent(input)}`);
      
      if (!response.ok) throw new Error('Network response was not ok');

      const reader = response.body.getReader();
      const decoder = new TextDecoder('utf-8');
      let done = false;

      while (!done) {
        const { value, done: readerDone } = await reader.read();
        done = readerDone;
        const chunk = decoder.decode(value, { stream: true });
        setMessages((prevMessages) => prevMessages + chunk);
      }

      // 请求完成后添加换行符以区分不同对话
      setMessages((prevMessages) => prevMessages + '\n\n=============================\n\n');
    } catch (error) {
      console.error('Failed to fetch', error);
    } finally {
      setInput(''); // 清除输入框
    }
  };

  const handleClearMessages = () => {
    setMessages('');
  };

  return (
    <div>
      <input
        type="text"
        value={input}
        onChange={handleInputChange}
        placeholder="Enter your message"
      />
      <button onClick={handleSendMessage}>Send</button>
      <button onClick={handleClearMessages}>Clear</button>
      <div>
        <h3>Messages:</h3>
        <pre>{messages}</pre>
      </div>
    </div>
  );
}

export default ChatComponent;

这里的关键点在于如何处理流式响应。我们使用了fetchAPI来发起请求,并利用TextDecoder解码每个读取的数据块。每次获取到新数据时,我们都更新状态变量messages,以便于实时显示最新消息。

运行项目

最后,启动你的React应用程序:

npm start

这将打开本地开发服务器,默认监听端口3000。你可以通过浏览器访问http://localhost:3000查看效果。

小结

上述过程展示了如何利用现代Web技术栈结合Spring AI Alibaba提供的流式接口功能,快速构建一个简单的支持流输出的聊天应用程序。用户界面非常直观,允许用户输入文本并通过点击“Send”按钮发送给后端进行处理,而前端则负责动态地展示接收到的信息。这样的设计非常适合需要即时反馈的应用场景,比如在线客服系统或智能助手等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2204412.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何利用wsl-Ubuntu里conda用来给Windows的PyCharm开发

前提&#xff1a;咱们在wsl-Ubuntu上&#xff0c;有conda的虚拟环境 咱们直接打开PyCharm,打开Settings 更换Python Interpreter即可 当然一开始可能没有下面的选项&#xff0c;需要我们点击右边的Add Interpreter 这里选择wsl 点击next 将这两步进行修改 可以看出来&#xff0…

计算机视觉之OpenCV vs YOLO

好多开发者希望搞明白OpenCV 和YOLO区别&#xff0c;实际上&#xff0c;二者在计算机视觉领域都有广泛应用&#xff0c;但它们有很大的不同。 一、OpenCV 概述 OpenCV&#xff08;Open Source Computer Vision Library&#xff09;是一个开源的计算机视觉和机器学习软件库。它…

继承--C++

文章目录 一、继承的概念及定义1、继承的概念 二、继承定义1、定义格式2、继承基类成员访问方式的变化3、继承类模板 三、基类和派生类间的转换1、继承中的作用域2、隐藏规则&#xff1a; 四、派生类的默认成员函数1、4个常见默认成员函数2、实现⼀个不能被继承的类 五、继承与…

(八)Proteus仿真STM32单片机GPIO驱动数码管

1&#xff0c;参考上篇&#xff0c;将LED点阵屏更换成数码管如下图 2&#xff0c;修改驱动函数&#xff0c;数组seg[14]前10个是0-9数字的编码&#xff0c;后四个是空格&#xff0c;点&#xff0c;横线&#xff0c;下划线 char seg_decode(char num)//数字解码 {const char se…

【华为欧拉】国产OpenEuler服务器系统安装以及图形界面

openEuler下载 | openEuler ISO镜像 | openEuler社区官网 下载安装iso 本次选择4G的社区版本 安装&#xff0c;复制到光盘&#xff0c;光盘引导安装。虚拟机安装&#xff0c;准备好iso文件引用&#xff0c;指定好安装源&#xff0c;安装界面和centOS基本一样。选择最小安装就…

JVM系列(二) -类的加载过程介绍

一、背景介绍 我们知道 Java 是先通过编译器将.java类文件转成.class字节码文件&#xff0c;然后再通过虚拟机将.class字节码文件加载到内存中来实现应用程序的运行。 那么虚拟机是什么时候加载class文件&#xff1f;如何加载class文件&#xff1f;class文件进入到虚拟机后发…

彻底理解TypeScript函数语法

目录 参数类型基本声明默认参数剩余参数可选只读匿名函数回调函数 返回值类型函数类型表达式调用签名构造签名 函数的重载this可推导的编译选项this类型内置工具 函数是JavaScript非常重要的组成部分&#xff0c;TypeScript中也是如此&#xff0c;TypeScript 提供了强大的类型系…

网关在不同行业自动化生产线的应用

网关在不同行业自动化生产线的应用&#xff0c;展示了其作为信息与物理世界交汇点的广泛影响力&#xff0c;尤其在推动行业智能化、自动化方面发挥了不可估量的作用。以下是网关技术在污水处理、智慧农业、智慧工厂、电力改造及自动化控制等领域的深入应用剖析。 1. 污水处理 …

盒子模型的简单运用

1.块内元素与行内元素 HTML_code <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</titl…

Scala面试题大全~基础题(15题)

1&#xff1a;Scala是什么? Scala是一种多范式的编程语言&#xff0c;它结合了面向对象编程和函数式编程的特性&#xff0c;它支持面向对象、函数式和命令式编程方法。Scala运行在Java虚拟机&#xff08;JVM&#xff09;上&#xff0c;这意味着它可以与Java代码无缝集成。它还…

【多版本并发控制(MVCC)】

并发事务问题&#xff1a; MySQL隔离级别-未提交读&#xff0c;提交读&#xff0c;可重复读&#xff0c;序列化 隔离级别对于并发事务的解决情况 隔离级别脏读不可重复读幻读未提交读不可不可不可读已提交可不可不可可重复读 &#xff08;默认&#xff09;可可不可串行化&…

现货黄金价格走势图策略分析 先看“势”

在现货黄金投资市场&#xff0c;对金价走势图的趋势进行分析&#xff0c;是投资者做出明智决策的关键步骤。通过有效的趋势分析&#xff0c;投资者可以更好地预测市场的走向&#xff0c;从而制定相应的交易策略。本文将详细介绍如何分析金价的趋势&#xff0c;并探讨这种分析方…

J1学习打卡

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 # 数据预处理和加载 import torch from torch import nn, optim from torch.utils.data import DataLoader from torchvision import datasets, transforms, …

Python | Leetcode Python题解之第470题用Rand7()实现Rand10()

题目&#xff1a; 题解&#xff1a; class Solution:def rand10(self) -> int:while True:a rand7()b rand7()idx (a - 1) * 7 bif idx < 40:return 1 (idx - 1) % 10a idx - 40b rand7()# get uniform dist from 1 - 63idx (a - 1) * 7 bif idx < 60:retur…

C语言 | Leetcode C语言题解之第472题连接词

题目&#xff1a; 题解&#xff1a; typedef struct Trie {struct Trie * children[26];bool isEnd; }Trie;#define TRIE_INITIAL(node) do { \for (int i 0; i < 26; i) { \(node)->children[i] NULL; \} \(node)->isEnd false; \ }while(0);static void freeTri…

仿IOS桌面悬浮球(支持拖拽、自动吸附、自动改变透明度与点击、兼容PC端与移动端)

使用 pointerdown/pointermove/pointerup 实现仿IOS桌面悬浮球效果&#xff0c;支持拖拽、指定拖拽选对容器&#xff0c;指定拖拽安全区、自动吸附、自动改变透明度与点击&#xff0c;兼容PC端与移动端。 效果展示 https://code.juejin.cn/pen/7423757568268304421 代码实现 …

(27)QPSK信号在非相关平坦莱斯(Rician)衰落信道上的误码率性能MATLAB仿真

文章目录 前言一、Rician衰落信道模型的MATLAB代码二、在非相关的平坦Rician衰落信道上传输QPSK符号模型1.MATLAB仿真代码2.仿真结果 前言 本文首先给出莱斯衰落信道的建模函数&#xff0c;然后基于该函数给出在非相关的平坦Rician衰落信道上传输QPSK数字调制符号的MATLAB仿真…

【OpenCV】基础操作学习--实现原理理解

读取和显示图像 基本操作 cv2.imread(filename , flags)&#xff1a;文件中读取图像&#xff0c;从指定路径中读取图像&#xff0c;返回一个图像数组&#xff08;NumPy数组&#xff09; filename&#xff1a;图像文件的路径flags&#xff1a;指定读取图像的方式 cv2.IMREAD_COL…

IP地址我个人的理解

作为连IP地址都没弄懂的一个网络小白&#xff0c;有时候开发以及建站会接触到IP、DNS等等概念&#xff0c;所以说有必要去查询一下相关知识内容&#xff0c;羞耻地说其实我是有一个计算机网络技术三级证书&#xff0c;但是这个啥用没有死记硬背就行了&#xff0c;许多知识点不能…

软件工程pipeline梳理

文章目录 软件工程pipeline梳理为什么需要梳理软件工程的pipeline软件工程pipeline的概念与注意点软件工程pipeline中的最大挑战rethink相关资料 软件工程pipeline梳理 为什么需要梳理软件工程的pipeline 反思自己日常工作中的认知和行为。以算法/软件工程师为代表的技术工种往…