飞行机器人专栏(十六)-- 双臂机器人体感交互式控制

news2024/11/22 16:59:39

目录

1. 概要

2. 整体架构流程

3. 控制系统设计

3.1 Vision-based Human-Robot Interaction Control

3.2 Human Motion Estimation Approach

4. 实现方法及实验验证

4.1 System Implementation

4.2  Experimental Setup

4.3 Experimental Results

5. 小结


​​​​​​​

1. 概要

     利用新型仿人双臂空中机械手实现更自然、更拟人化的作业交互,实现混合智能遥操作控制,仍然是一个亟待解决的问题。针对我们设计的新型空中双手机械手,提出了一种基于视觉的直观控制策略,重点是增强人机交互(HRI)和基于视觉的遥操作。这种创新的HRI控制策略近似于人类操作员的运动意图和机械手定位之间的复杂非线性映射函数。此外,使用KF算法融合了来自多个Kinect DK单元的鲁棒全身3D骨架跟踪,为空中机械手的遥操作控制服务。采用这种控制系统,双臂空中机械手可以与人类合作,灵活高效地执行双手任务。实验结果证明了所提出的基于视觉的骨架跟踪方法在航空机械手遥操作控制中促进人机协作交互的充分性和准确性。

    最近,与环境进行物理交互的拟人化空中操纵器引起了学术界和工业界的极大兴趣。将拟人化操纵器与无人机集成在一起,使空中机器人能够与环境和物体进行交互,应用范围包括电力线基础设施检查[6]、建筑工地协助[7]、基于接触的安装[8]等。这些系统为人类执行具有挑战性或危险性的任务提供了灵活和动态的解决方案,特别是在难以到达或封闭的空间中。然而,在研究类人拟人化航空机械手技术及其应用时,复杂的动态配置和与环境的物理交互所带来的协调控制挑战是开发和应用的重要制约因素。因此,研究可以在这些复杂的动态航空机器人系统中快速部署的人在环控制策略,以实现高效和精确的操作,具有重大的研究和应用价值。
   基于视觉的人机混合遥操作是一种人机交互系统,允许操作员通过视觉反馈控制远程机器人[9]。随着计算机视觉和人工智能技术的快速发展,基于视觉的遥操作技术近年来得到了广泛的关注和应用。已经进行了几项研究,以引入类人行为来提高人机协作任务的性能。Meng等人[5]提出了一种接触力控制框架来解决这个问题,其中使用逆动力学方法设计接触力控制器,并采用姿态前馈方法来提高力跟踪性能。开发了创新的航空机械手原型并进行了飞行实验,验证了提出的框架。此外,Sampedro等人[10]、Liang等人[3]、Malczyk等人[4]还研究了基于图像的视觉伺服与环境物理交互的相关方向以及航空机械手的接触力控制策略。在[11]和[12]中,来自不同运动捕捉系统的2D或3D骨架数据已被用于提高人体姿势跟踪性能。Liang等人[13]、Su等人[14]也研究了用于类人行为模仿的深度学习网络方法,以提高人机交互(HRI)的质量。
     从现有的研究来看,基于视觉的人机混合遥操作在航空机器人系统中的研究很少,其中大部分是近年来开始的。我们提出了一种混合人机交互(HRI)控制系统来解决上述挑战。提出了一种基于人体3D骨架估计的人机交互界面,该界面允许人类用户在模拟和现实环境中与机器人交互并将运动传递给机器人。机器人手臂可以通过利用运动学冗余来实现仿人动作,而不是在末端执行器上进行类似人类的运动。实现了具有离散协同控制系统的航空机械手原型。最后,建立了实验场景,以提高所提出的基于视觉的航空机械手HRI控制方法的系统性能。

2. 整体架构流程

本文基于人体手臂的简化运动学模型,设计并开发了一种具有柔顺性和拟人化特征的仿人双臂空中机械手系统。整体结构采用仿生设计原理,左臂和右臂对称。为了满足空中机器人的有效载荷能力和续航能力需求,该原型的每个模块都经过模块化、紧凑和轻便的设计,便于无缝集成到空中机器人系统中。每个机械手都有一个4自由度结构,用于基于空中接触的操纵,并在肩部柔性关节中设计了一个紧凑的柔性机构。3D空中机械手原型如图1所示。

Figure 1. Humanoid structure of the compliant dual-arm aerial manipulator.
Figure 1. Humanoid structure of the compliant dual-arm aerial manipulator.

      双臂的大小和比例以及肩宽与人类手臂相似。在这些关节中,肩部偏航和肩部俯仰是顺应性关节,关节结构包含一个顺应性机制。这种设计具有人形和低惯性的顺应性特征,便于模仿和复制拟人化双手技能[15]。柔性关节作为机械手结构中的一个轻质柔性单元,其设计合理性对机械手的稳定运动和接触安全起着重要作用[16]。
       该系统集成了一个最大起飞重量为15公斤的多旋翼平台、两个4自由度空中机械手和高性能机载计算设备Jetson Xavier NX。此外,控制系统的软件架构采用分布式控制策略,使遥操作控制系统、空中机器人任务管理器和机器人手臂运动控制器在不同的计算设备上运行。这种分布式计算架构有助于降低机载侧的计算负载和功耗,这对提高系统的稳定性和可扩展性具有重要意义。同时,地面军事系统作为人机交互的遥操作控制和可视化终端,提供精细的操作控制和状态信息反馈,使地面操作员能够控制空中机械手稳定可靠地执行任务。此外,弹性驱动单元仅集成在肩关节和摆动关节中,以尽可能减轻整体重量。

 


3. 控制系统设计

3.1 Vision-based Human-Robot Interaction Control

   Modeling and tracking the human body’s 3D skeleton is important in designing the vision-based HRI teleoperation controller. Figure 2 illustrates the joint locations and connections relative to the human body for the Azure Kinect method and OpenPose. In this study, we use the Azure Kinect human skeleton modeling method. The skeleton includes 32 joints, with the joint hierarchy flowing from the body's center to the extremities, and each connection (bone) links the parent joint with a child joint.

Figure 2. Human 3D skeleton and joint locations and connections definition. (a) Azure Kinect; (b) OpenPose.

    An aerial dual-arm robot teleoperation control system was designed and developed based on the definition of the human body skeleton and the kinematic model of the humanoid dual-arm system. Figure 3 shows this control system mainly comprises three major components: the ground station human-in-the-loop teleoperation control platform, the human motion state estimator, and the compliant aerial robotic arm hardware platform.

Figure 3. The visual-guided teleoperation control architecture diagram for the aerial manipulator.

    In this control framework, the ground station human-in-the-loop teleoperation control platform serves as the operational visual data processing unit, extracting the upper limb motion demonstration and fine gesture actions from two Kinect DK visual cameras and one RealSense D435i camera to produce color and depth images. The state estimator receives this human motion state image packets frame by frame to extract the 3D skeletal points of the upper limbs and arms. The designed vision-based state estimator fuses the skeletal motion information from multiple visual cameras into high-quality joint motion estimation data free from occlusion, noise, and jitter.

    Subsequently, the joint controller of the aerial dual-arm robot receives the human joint motion data processed by the joint angle smoother, performing workspace remapping and joint servo control for the robotic arms. The control objective is to minimize the end-effector pose and joint angle deviations. Concurrently, a multi-agent distributed collaborative control and communication system was designed and developed, along with the ground station control equipment and the aerial dual-arm robot edge computing controller, to achieve natural human-robot interaction control and operational process visualization.

3.2 Human Motion Estimation Approach

   To achieve human-like behavior on the designed aerial manipulator, the human arm is simplified as a rigid kinematic chain connected by three basic joints: shoulder joint, elbow joint, and wrist joint, as shown in Figure 2. Using multiple Kinect DKs, we can have the skeleton data of the human arm joints directly, including 32 joints in 3D positions relative to the camera coordinate. These joint angles are all in the joint space, as shown in Figure 4. When estimating the posture of the human arm, the elbow swivel angle is used to represent the lateral motion of the elbow joint. The intersection of the reference and arm planes defines this angle. However, because the developed 4-degree-of-freedom aerial robotic arm joints cannot fully mimic the joint configuration of the human arm, this angle is disregarded in the human motion estimator, focusing on the rotational angles of each joint.

Figure 4.  Definition of the joint angle of the human arm using skeleton data.

4. 实现方法及实验验证

4.1 System Implementation

We implemented a prototype of the vision-based markerless full-body skeleton tracking system using multiple devices, two Kinect DK and one RealSense D435i. The system setup is shown in Figure 5. A graphic workstation(Intel Core i5-8400H at 4.2GHz, 16GB RAM, and NVIDIA GPU 1650) is applied as the server to drive the main 3D skeleton tracking and data fusion program. These visual devices are connected to the server computer via a USB 3.0 communication hub. The ground control station(GCS) is the human-control client that obtains the robot state information and publishes the control commands in real-time. When a foreground object blocks the view of part of a background object for one of the two cameras on a device, the occlusion will occur. Therefore, multiple Azure Kinect DK devices should be synchronized with one master and one subordinate device to reduce the occlusions. The master device's Sync Out port provides the triggering signal for the subordinate device's Sync In port through a 3.5-mm audio cable.

Figure 5. Multi-Kinect 3D skeleton state estimation system setup. (a)System architecture and main components diagram; (b) Experimental devices implementation.

The multiple Kinects are evenly placed in a semi-circle space with a radius of 2.5m, facing the center of the circle. With the setup, the tracking space of the system is shown in Figure 6. The RGB-D camera RealSense D435i is fixed at a lower height to detect operators' hand postures. The available tracking space is a hexagon with a long axis of 2.5 m (shown as the blue area), and the fine tracking space is a hexagon area with a 2.5-3.0 m diameter. 

Figure 6. Tracking Space of the multi-kinect system.

4.2  Experimental Setup

To verify the efficiency of the proposed HRI method, human-robot telemanipulation for moving objects is implemented with comparative tests under two different scenarios: low stiffness mode and human-operated mode. As shown in Figure 7, the human operator moves the aerial robot arm via visual feedback from the Ground Control Station (GCS) and adapts the arm pose to move the objects to enable the aerial robot to imitate human motor adaptive behaviors through UDP communications between the host computer and the aerial manipulator.

Figure 7. Vision-guided teleoperation experimental devices for the dual-arm aerial manipulator.

4.3 ​​​​​​​Experimental Results

  1. Joint State Estimation Experiment Results

In this study, we employed the designed multi-kinect data fusion state estimator to estimate and analyze joint angles of the human body arm, focusing on three key aspects: response speed, motion tracking accuracy, and estimation smoothness. The experiment was divided into three stages of arm movements: the first involved shoulder swing and pitch movements during 10s ~ 30s, the second involved elbow flexion and extension during 30s ~ 50s, and the third involved combined movements of the shoulder and elbow joints during 50s ~ 80s. The experimental results can be seen in Figure 8.

First, the multi-Kinect state estimation system's average response time to changes in joint angles was 30 milliseconds, with the maximum response time not exceeding 50 milliseconds, similar to the estimator used by a single Kinect DK. This demonstrates high sensitivity and the ability to rapidly capture variations in joint angles. Second, the system exhibited an average tracking error of less than 5mm regarding motion-tracking accuracy, indicating that it can accurately reflect the changes in joint positions and angles. In this regard, the estimation accuracy of the single-kinect estimator is not as good as that after multi-kinect fusion. Finally, regarding motion estimation smoothness, analysis of the joint angle time-series data revealed that the system's output joint angle curves were highly smooth, suggesting that the system can avoid abrupt transitions and provide continuous and smooth motion trajectories.

Figure 8. Human joint position tracking results.

2. HRI Teleoperation Control Experiments

Participants stood before the visual equipment in this experiment, utilizing dual Kinect DK and D435i devices for human motion tracking and state estimation. The control system integrated gesture recognition algorithms, motion planning algorithms, and low-level control interfaces to achieve human-robot teleoperation control. Gesture recognition captured basic hand gestures, such as fist clenching and palm opening. These were then discretized into control input signals for the end-effector to execute grasping and placing tasks.

Figure 9. Image sequence of aerial manipulator pick and place operation experiment process.

Figure 10. The actuator state changes of the aerial manipulator joint actuators for the teleoperation test:(a) Joint Position and (b) Gripper State.

Figures 9 and 10 show that the robotic hand could achieve smooth motion trajectories during grasping and placing tasks, minimizing abrupt transitions and enhancing the naturalness and fluidity of operations. Then, regarding control accuracy, the system exhibited an average positional error of 1.5 millimeters, with the maximum positional error not exceeding 3 millimeters. This level of precision ensures accurate completion of grasping and placing tasks. The gesture recognition accuracy was more than 90%, with the end-effector state control response time being 30 milliseconds. These data indicate that the system efficiently and accurately recognizes operational gestures and responds swiftly, ensuring consistency between the robotic hand's state control and operational commands.

5. 小结

In summary, the human-robot teleoperated interaction system demonstrated excellent performance regarding the success rate and accuracy of grasping and placing tasks. It exhibited high-performance indices in control smoothness, control accuracy, and gesture recognition integrated with end-effector state control, validating the system's feasibility and effectiveness in practical applications. These findings provide important reference points for further optimization and broader implementation.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2204309.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Qt Creator 通过python解释器调用*.py

全是看了大佬们的帖子,结合chatGPT才揉出来。在此做个记录。 安装python在Qt Creator *.pro 文件中配置好环境来个简单的example.py调用代码安装pip添加opencv等库调用包含了opencv库的py代码成功 *.pro配置: INCLUDEPATH C:\Users\xuanm\AppData\Lo…

接口测试-day3-jmeter-2组件和元件

组件和元件: 组件:组件指的是jmeter里面任意一个可以使用的功能。比如说查看结果树或者是http请求 元件:元件指是提对组件的分类 组件的作用域:组件放的位置不一样生效也不一样。 作用域取决于组件的的层级结构并不取决于组件的…

论文阅读:OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning

论文地址:arxiv 摘要 由于时空预测没有标准化的比较,所以为了解决这个问题,作者提出了 OpenSTL,这是一个全面的时空预测学习基准。它将流行的方法分为基于循环和非循环模型两类。OpenSTL提供了一个模块化且可扩展的框架&#xff…

算法: 前缀和题目练习

文章目录 前缀和题目练习前缀和二维前缀和寻找数组的中心下标除自身以外数组的乘积和为 K 的子数组和可被 K 整除的子数组连续数组矩阵区域和 前缀和题目练习 前缀和 自己写出来了~ 坑: 数据太大,要用long. import java.util.Scanner;public class Main {public static voi…

“国货户外TOP1”凯乐石签约实在智能,RPA助力全域电商运营自动化提效

近日,国货第一户外品牌KAILAS凯乐石与实在智能携手合作,基于实在智能“取数宝”自动化能力,打通运营数据获取全链路,全面提升淘宝、天猫、抖音等平台的运营效率与消费者体验,以自动化能力驱动企业增长。 KAILAS凯乐石…

雨晨 24H2 正式版 Windows 11 iot ltsc 2024 适度 26100.2033 VIP2IN1

雨晨 24H2 正式版 Windows 11 iot ltsc 2024 适度 26100.2033 VIP2IN1 install.wim 索引: 1 名称: Windows 11 IoT 企业版 LTSC 2024 x64 适度 (生产力环境推荐) 描述: Windows 11 IoT 企业版 LTSC 2024 x64 适度 By YCDISM 2024-10-09 大小: 15,699,006,618 个字节 索引: 2 …

Jenkins常见问题处理

Jenkins操作手册 读者对象:生产环境管理及运维人员 Jenkins作用:项目自动化构建部署。 一、登陆 二、新增用户及设置权限 2.1:新增用户 点击Manager Jenkins → Manager Users → Create User 2.2:权限 点击Manager Jenkins…

互联网线上融合上门洗衣洗鞋小程序,让洗衣洗鞋像点外卖一样简单

随着服务创新的风潮,众多商家已巧妙融入预约上门洗鞋新风尚,并携手洗鞋小程序,开辟线上蓝海。那么,这不仅仅是一个小程序,它究竟蕴含着哪些诱人好处呢? 1. 无缝融合,双线共赢:小程序…

Corel VideoStudio Ultimate 会声会影2025旗舰版震憾来袭,会声会影2025旗舰版最低系统要求

软件介绍 会声会影2025旗舰版全名:Corel VideoStudio Ultimate 2025,相信做视频剪辑的朋友都认识它,会声会影是一款强大的视频剪辑编辑软件,运用数百种拖放滤镜、效果、图形、标题和过渡,探索新奇好玩的新增面部追踪贴…

彩族相机内存卡恢复多种攻略:告别数据丢失

在数字时代,相机内存卡作为我们存储珍贵照片和视频的重要媒介,其数据安全性显得尤为重要。然而,意外删除、错误格式化、存储卡损坏等情况时有发生,导致数据丢失,给用户带来不小的困扰。本文将详细介绍彩族相机内存卡数…

【万字长文】Word2Vec计算详解(三)分层Softmax与负采样

【万字长文】Word2Vec计算详解(三)分层Softmax与负采样 写在前面 第三部分介绍Word2Vec模型的两种优化方案。 【万字长文】Word2Vec计算详解(一)CBOW模型 markdown行 9000 【万字长文】Word2Vec计算详解(二&#xff0…

初级网络工程师之从入门到入狱(五)

本文是我在学习过程中记录学习的点点滴滴,目的是为了学完之后巩固一下顺便也和大家分享一下,日后忘记了也可以方便快速的复习。 网络工程师从入门到入狱 前言一、链路聚合1.1、手动进行链路聚合1.1.1、 拓扑图:1.1.2、 LSW11.1.3、 LSW2 1.2、…

5.C语言基础入门:数据类型、变量声明与创建详解

C语言基础入门:数据类型、变量声明与创建详解 C语言往期系列文章目录 往期回顾: C语言是什么?编程界的‘常青树’,它的辉煌你不可不知VS 2022 社区版C语言的安装教程,不要再卡在下载0B/s啦C语言入门:解锁…

Elasticsearch 索引数据预处理

pipeline 在文档写入 ES 之前,对数据进行预处理(ingest)工作通过定义 pipeline 和 processors 实现。 注意:数据预处理必须在 Ingest node 节点处理,ES 默认所有节点都是 Ingest node。 如果需要禁用 Ingest &#x…

Java中的拦截器、过滤器及监听器

过滤器(Filter)监听器(Listener)拦截器(Interceptor)关注点web请求系统级别参数、对象Action(部分web请求)如何实现函数回调事件Java反射机制(动态代理)应用场…

《大道平渊》· 廿贰 —— 杀心篇:独立人格的形成

《大道平渊》 独立人格的形成,在杀心的过程中会越来越完备。 在这个漫长的过程中,你会一次次击碎自己固有的三观,慢慢再修复你的三观。 . 不要认为一个人的明白,都是恍然大悟,都是碰到了高人指点。 并不是这样的&a…

使用 Raspberry Pi Pico W 的基于 MQTT 的分布式网络自适应估计

英文论文标题:MQTT based Adaptive Estimation over Distributed Network using Raspberry Pi Pico W 中文论文标题:使用 Raspberry Pi Pico W 的基于 MQTT 的分布式网络自适应估计 作者信息: Prantaneel DebnathAnshul GusainParth Sharm…

46 C 语言文件的打开与关闭、写入与读取函数:fopen、fclose、fputc、fputs、fprintf、fgetc、fgets、fscanf

目录 1 文件的存储形式 2 打开文件——fopen() 函数 2.1 功能描述 2.2 函数原型 2.3 文件打开方式(模式) 3 关闭文件——fclose() 函数 3.1 功能描述 3.2 函数原型 4 常见的文件写入方式 4.1 fputc() 函数 4.1.1 功能描述 4.1.2 函数原型 4…

第四范式发布全新一代文档数字化管理平台Smart Archive 2.0

产品上新 Product Release 今日,第四范式正式推出全新一代文档数字化管理平台——Smart Archive 2.0。该产品基于第四范式自研的文档处理大模型,实现零样本下对企业文档的精准识别及信息提取。文档处理大模型利用二十多个行业,上百种场景下的…

【华为】默认路由配置

1.配置接入层: LSW1(LSW3同理): vlan batch 10 20 in g0/0/1 port link-type ac port default vlan 10 in g0/0/2 port link-type ac port default vlan 20 in g0/0/24 port link-type tr port tr allow-pass vlan 10 20 2.配置汇聚层&#x…