pipe和pipefd

news2025/1/11 0:41:19

Linux 中 pipe 的详细介绍

在 Linux 中,pipe 是一个系统调用,用于创建一个管道,这是一种用于进程间通信(IPC)的机制。管道允许两个进程之间进行单向数据传输,通常是一个进程向管道写入数据,而另一个进程从管道读取数据。

管道的工作原理

当 pipe 调用成功时,它会返回两个文件描述符,分别对应管道的两端:pipefd[0] 和 pipefd[1]

  • pipefd[0] 通常用于读取数据。
  • pipefd[1] 通常用于写入数据。

数据从 pipefd[1] 写入后,会存储在内核缓冲区中,直到被 pipefd[0] 的读取操作读取。

创建管道

使用 pipe 系统调用来创建管道:

#include <unistd.h>

int pipe(int pipefd[2]);

如果 pipe 调用成功,它将返回 0;如果失败,则返回 -1,并且 errno 将被设置以指示错误。

管道的用法

以下是一个简单的例子,展示了如何使用 pipe

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>

int main() {
    int pipefd[2];
    pid_t cpid;

    // 创建管道
    if (pipe(pipefd) == -1) {
        perror("pipe");
        return 1;
    }

    // 创建子进程
    cpid = fork();
    if (cpid == -1) {
        perror("fork");
        close(pipefd[0]);
        close(pipefd[1]);
        return 1;
    }

    if (cpid == 0) { // 子进程
        // 关闭不需要的文件描述符
        close(pipefd[1]);
        // 读取管道中的数据
        char message[20];
        read(pipefd[0], message, sizeof(message) - 1);
        printf("Received: %s\n", message);
        close(pipefd[0]);
        return 0;
    } else { // 父进程
        // 关闭不需要的文件描述符
        close(pipefd[0]);
        // 写入数据到管道
        const char *message = "Hello, this is the parent!";
        write(pipefd[1], message, strlen(message));
        close(pipefd[1]);
        // 等待子进程结束
        wait(NULL);
        return 0;
    }
}

pipefd 的介绍

pipefd 是一个整数数组,它包含两个元素,用于存储管道的两个文件描述符。在创建管道后,pipefd[0] 和 pipefd[1] 分别被赋予管道的读取和写入端。

  • pipefd[0]:管道的读取端,通常用于从管道中读取数据。
  • pipefd[1]:管道的写入端,通常用于向管道中写入数据。

在上述例子中,pipefd 被用作参数传递给 pipe 函数,并在子进程中用于读取数据,在父进程中用于写入数据。

注意事项

  • 当一个进程关闭管道的任一端时,另一个进程会收到一个 SIGPIPE 信号,除非它已经设置了 SIG_IGN 或 SIG_ERR 处理程序。
  • 管道是单向的,如果你需要双向通信,需要创建两个管道。
  • 管道是阻塞的,这意味着如果管道的另一端没有准备好读取或写入,操作会阻塞直到条件满足。

总结

pipe 是 Linux 中实现进程间通信的一种简单而有效的方法。通过 pipefd,可以访问管道的两个端点,从而实现数据的双向传输。正确使用 pipe 和 pipefd 可以帮助开发者实现高效的进程间通信。

自己总结

pipe创建一个管道

pipe的介绍

1完成这件事:

看图分析

运行结果

#include<iostream>
#include<unistd.h>
using namespace std;
int main()
{
    //创建管道
    //先创建一个pipefd数组
    int pipefd[2];
    //用n接受一下,判断是否成功
    int n = pipe(pipefd);
    if(n<0) return 1;//创建失败了

    //创建成功
    //测试一下文件描述符是3和4
    cout<<"pipefd[0]:"<<pipefd[0]<<"pipefd[1]:"<<pipefd[1]<<endl;
    

    return 0;
}

2完成这件事:

创建一个子进程

 pid_t id = fork();
    if(id < 0)return 2;//创建失败
    if(id == 0)//创建成功
    {
        //子进程

    }
    //父进程

让子进程写入,父进程读取

要想让子进程进程写,就需要在进程中关闭读端

if(id == 0)//创建成功
{
     //子进程
     close(pipefd[0]);
}

同理

//父进程
close(pipefd[1]);

都用完结束后,可以都关掉

    if(id == 0)//创建成功
    {
        //子进程
        close(pipefd[0]);
        //.....
        close(pipefd[1]);
    }
    //父进程
    close(pipefd[1]);
    //.....
    close(pipefd[0]);

IPC code,写通信代码

3这件事也完成了:

结构就有了

然后在pipefd[1]这个管道里写,定义一个Writer函数

    if(id == 0)//创建成功
    {
        //子进程
        close(pipefd[0]);
        //.....IPC code,写通信代码
        //在pipefd[1]这个管道里写
        Writer(pipefd[1]);


        close(pipefd[1]);

        exit(0);//正常退出
    }

同理父进程的        

    //父进程
    close(pipefd[1]);
    //.....IPC code,写通信代码
    //在pipefd[0]这个管道里写
    Reader(pipefd[0]);


    close(pipefd[0]);

//子进程
void Writer(int wfd)
{

}
//父进程
void Reader(int rfd)
{

}

Writer

//子进程
void Writer(int wfd)
{
    string s = "hello,I am child";
    pid_t self = getpid();
    int number = 0;

    char buffer[10];
    while(true)
    {
        buffer[0] = 0;//字符串清空,只是为了提醒阅读代码的人,我把这个数组当字符串了

    }
}

用到snprintf
介绍

将s和self和number放进buffer

  char buffer[100];
    while(true)
    {
        buffer[0] = 0;//字符串清空,只是为了提醒阅读代码的人,我把这个数组当字符串了
        snprintf(buffer,sizeof(buffer),"%s    pid:%d\n",s.c_str(),self);
        cout<< buffer <<endl;
        sleep(1);
    };

用cout打印测试一下,打印成功说明写入buffer成功了

等待进程少不了,子进程exit后需要回收

 //父进程
    close(pipefd[1]);
    //.....IPC code,写通信代码
    //在pipefd[0]这个管道里写
    Reader(pipefd[0]);

    //等待进程缺少不了
    pid_t rid = waitpid(id,nullptr,0);
    if(rid < 0) return 3;//等待失败了

    close(pipefd[0]);

如何把消息发送/写入给父进程

用到了write

用write写入管道(管道也是文件),用strlen,不用+1,不用管\0,因为C语言规定\0结尾,和文件没有关系,wfd写入管道

//子进程
void Writer(int wfd)
{
    string s = "hello,I am child";
    pid_t self = getpid();
    int number = 0;
    char buffer[100];
    while(true)
    {
        buffer[0] = 0;//字符串清空,只是为了提醒阅读代码的人,我把这个数组当字符串了
        snprintf(buffer,sizeof(buffer),"%s    pid:%d  %d\n",s.c_str(),self,number++);
        //用write写入管道(管道也是文件),用strlen,不用+1,不用管\0,因为C语言规定\0结尾,和文件没有关系,wfd写入管道
        write(wfd,buffer,strlen(buffer));
        //cout<< buffer <<endl;
        sleep(1);
    };
}

父进程该怎么读取呢

用到了read,fd是文件描述符,从特定的文件描述符里读取,放在这个buf里,buf的长度是count

这里就需要考虑到\0,因为buffer中需要\0

//父进程
void Reader(int rfd)
{
    char buffer[100];
    while(true)
    {
        buffer[0] = 0;
                                    //用sizeof是为了留个空间放\0
        ssize_t n = read(rfd, buffer, sizeof(buffer));//sizeof!=strlen
        if(n > 0)
        {
            //添加\0,因为要放在buffer数组中读取
            buffer[n]=0;
            cout << "father get a message[" << getpid() <<"]"<< buffer <<endl;
        }
    }
}

运行结果

也会发现:为什么子进程sleep,父进程不sleep,父进程还是会跟着子进程sleep,因为父子进程是要协同的

管道本质

通信是为了更好的发送变化的数据,管道本质上是文件

所以必须要用到系统调用接口来访问管道,其是由系统管理,read和write

,操作系统相当于中介 

结论:管道的特征:

1:具有血缘关系的进程进行进程间通信

2:管道只能单向通信

3:父子进程是会进程协同的,同步与互斥的--保护管道文件的数据安全

4:管道是面向字节流的

5:管道是基于文件的,而文件的生命周期是随进程的

再测试,把子进程sleep去掉,就是让子进程写快一点,父进程sleep几秒,就是让父进程读慢一点,看有什么现象

 管道的四种情况

测试管道大小

把c一直往管道里写,把父进程中休眠50秒

结果差不多64kb

写端退了,测试结果

结果是:

读端正常读,写端关闭,读端就会读到0,表明读到了文件(pipe)结尾,不会被阻塞

read读取成功会返回读到的字符个数,读到结尾返回0

读到结尾父进程也就可以停止读取了,break后去把僵尸的子进程回收

break到这里

最后子进程会被waitpid回收

测试子进程一直写,父进程读一会就退出

定义一个cnt控制退出的时间

这里也要修改一下,加个sleep(5),观察,close提前关闭

结果:通过13号信号杀死 

管道到的应用场景

都会变成一个进程

写一个进程池(pipe_use)

首先创建好文件

创建5个进程

channel通道的意思

cmdfd文件描述符

slaverid代表哪个子进程

把它放进vector容器里

思路步骤

管道创建

void(n),假装使用一下,要不然编译不过

创建父子进程

父进程写,子进程读

子进程要读取,就要关闭自己的写端,父进程同理

子进程中的任务

子进程pid有了管道也有了,就差在父进程添加字段了

先更改一下,在class里构造一下

添加字段

测试一下:结果:文件描述符0,1,2是默认打开,3是从管道里读,4是写入管道

把初始化改造成函数

debug测试函数,纯输入函数

第二步开始控制进程了(想让子进程做什么)

这里打印的rfd都是3,正常吗,文件描述符是可以被子进程继承的

父进程对应的写端拿到的是4-8,子进程拿到的读端fd是3

改变一下,直接从键盘(0号描述符)里读,不从管道(3)里读了,就没有管道的概念了,slaver就不用传参了,父进程通过管道写,子进程通过标准输入读

用到了dup2,将从pipefd[0]中读变成从0开始读

想让父进程固定的向管道里写入指定大小字节的内容,必须读取四个字节,四个字节四个字节的写和读,这里的管道64kb

必须读取四个字节

如果父进程不给子进程发送数据呢?阻塞等待!

开始控制子进程

生成一个随机数种子

可以随机选择任务和选择进程

cmd是任务码,测试一下,父进程控制子进程,父进程发送给子进程(通过cmdcode连续)

在Task.hpp里

要用到函数指针

main中的任务了就属于

再把任务装载进来

输出型参数用*

现在开始选择任务和进程

再把main中的任务弄成全局的

进行判断一下

测试 ,comcode和任创建的任务一致

这里的write是父进程进行写入,向子进程发送,子进程不得闲,先写到管道里,等得闲了再读

也可以轮询选择,定义一个计数器,++弄,再%等

整理一下控制代码,这里是输入型参数,只需要读

这样就可以轮询方式选择进程了,不用随机了

结果

清理收尾

思路:把所有文件的描述符都关掉

等待方式设置为0 

read返回0,就是失败了,然后slaver就会调完

结束完就会exit直接退出

打印下更好显示

关闭文件描述符后sleep(10)秒,

然后这10个子进程一瞬间都应该break,然后最后到exit直接就退了,10秒结束后,父进程再回收他       

测试时不弄死循环,用cnt,5秒后自动结束控制,正常退出流程

测试结果

手动控制一下

定义一个select,输入0就是退出了,判断完后,就走到了选择任务


然后直接把cmdcode改为选择的select,-1是因为是从下标0开始的,输入1就是0下标的

测试

bug的地方:

这样会有一些bug(一个子进程不是只有一个写端(每一次子进程的创建都是有继承))

 这样会有一些bug(一个子进程不是只有一个写端(每一次子进程的创建都是有继承))

按理说这样是对的,可是这样就错了

因为下面两个红线还没有关掉,它们进程了最开始的w

这样倒着回收是可以的

正确改法

修改一下

最后一个push_back的就都是父进程的写入fd,

然后加一句这个红线的,每创建子进程后都先把上一次父进程的读端fd关掉就可以了,这里很妙,因为vector一开始是空的

方便看

这里这样就可以了        

管道已经完成

以上是匿名管道 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2202212.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【机器学习】金融预测 —— 风险管理与股市预测

我的主页&#xff1a;2的n次方_ 在金融领域&#xff0c;机器学习&#xff08;ML&#xff09;已经成为了不可或缺的工具。金融预测&#xff0c;尤其是风险管理和股市预测&#xff0c;涉及海量数据和复杂模式的分析&#xff0c;而这些正是机器学习擅长处理的领域。通过分析历…

什么是矩阵系统,怎么选择矩阵系统,怎么oem贴牌,怎么源码搭建

一、架构设计方面 采用微服务架构 将矩阵系统拆分为多个小型的、独立的服务模块。每个微服务专注于特定的业务功能&#xff0c;如用户管理、内容发布、数据分析等。这样可以独立地开发、部署和扩展每个服务&#xff0c;而不会影响整个系统。例如&#xff0c;当用户量增加导致用…

机器学习与神经网络荣膺诺贝尔物理学奖:跨学科融合的时代来临

近日&#xff0c;2024年诺贝尔物理学奖颁发给了机器学习与神经网络领域的研究者&#xff0c;这一消息犹如一颗重磅炸弹&#xff0c;迅速在全球学术界和科技界引起了轰动和热议。这是诺贝尔物理学奖首次将桂冠授予计算机科学领域的研究者&#xff0c;标志着物理学与计算机科学的…

dvwa:文件包含、文件上传

文件包含 本地文件包含&#xff08;敏感信息泄露&#xff09;和远程文件包含&#xff08;命令执行&#xff09; 本地文件包含一般包含一些本地的敏感文件&#xff0c;如&#xff1a;/etc/passwd或/etc/shadow等 远程文件包含能使得服务器代码执行&#xff0c;如包含黑客vps的…

【纯前端实现xlsx的解析并处理成table需要的格式】

概要 xlsx纯前端导入并解析成json 整体架构流程 xlsx导入并解析成json&#xff0c;并与table中的数据进行对比&#xff0c;根据唯一标识更新对应数据项 技术名词解释 vue2xlsx 技术细节 首先下载xlsx依赖 npm install xlsx --save然后在需要导入xlsx的地方 这里主要用in…

基于模型的强化学习方法4大类灌水范式

我们都知道基于模型的强化学习&#xff0c;就是从数据中学一个环境模型。 举个例子&#xff0c;我们要控制一个马达&#xff0c;输入就是电流&#xff0c;输出就是转速。无模型强化学习就是随机采样&#xff0c;然后从数据中直接学习输入到输出的影射&#xff0c;研究重心在如…

【AAOS】Android Automotive 10模拟器源码下载及编译

源码下载 repo init -u https://android.googlesource.com/platform/manifest -b android-10.0.0_r47 repo sync -c --no-tags --no-clone-bundle 源码编译 source build/envsetup.sh lunch aosp_car_x86_64-userdebug make -j8 运行效果 emualtor Cluster Home Map All …

大模型部署-​Ollama+WebUI

Ollama&#xff08;安装包和安装文档文末领取&#xff01;&#xff09; Ollama 简介 主要特点&#xff1a; 易于使用&#xff1a;它提供了一个简洁的界面和命令行工具&#xff0c;使得用户可以方便地管理和运行不同的大语言模型。 多种模型支持&#xff1a;可以运行多种开源…

ip地址换网就不一样了吗?ip地址会因什么变动而变化

在当今数字化时代&#xff0c;IP地址作为网络设备的唯一标识&#xff0c;扮演着至关重要的角色。然而&#xff0c;对于许多用户来说&#xff0c;IP地址的变动仍然是一个充满疑惑的话题。那么&#xff0c;IP地址换网就真的不一样了吗&#xff1f;本文将深入探讨IP地址变动的因素…

力扣1~10题

题1&#xff08;简单&#xff09;. 思路&#xff1a; 因为时间复杂度小于n^2,所以不能双for遍历&#xff0c;怎么优化&#xff1f; 这里采用一个键值对的形式&#xff0c;存储nums离target的间隔和它的下标&#xff0c;只要n&#xff0c;然后再遍历nums有没有刚好是这个距离的就…

SwiftUI 在 iOS 18 中的 ForEach 点击手势逻辑发生改变的解决

概述 原本在 iOS 17 中运行良好的 SwiftUI 代码突然在 iOS 18 无法正常工作了&#xff0c;具体表现为原来视图中的的点击手势无法响应。 这是怎么回事呢&#xff1f; 且看分解&#xff01;Let’s go&#xff01;&#xff01;&#xff01;&#x1f609; 问题现象 从下面的演示…

自动驾驶系列—GPS技术在自动驾驶中的应用与挑战:全面解析

&#x1f31f;&#x1f31f; 欢迎来到我的技术小筑&#xff0c;一个专为技术探索者打造的交流空间。在这里&#xff0c;我们不仅分享代码的智慧&#xff0c;还探讨技术的深度与广度。无论您是资深开发者还是技术新手&#xff0c;这里都有一片属于您的天空。让我们在知识的海洋中…

海量案例!点击洞察2024年工业数字孪生发展趋势

如果能在虚拟世界中完美复制出现实中的物体或系统&#xff0c;将会带来怎样的变革&#xff1f;数字孪生正是这样一种神奇的存在——它将物理世界中的设备或系统转化为精确的虚拟模型&#xff0c;通过实时数据的采集、分析与应用&#xff0c;创造出一个与“物理实体”完全对应的…

Apache DolphinScheduler-1.3.9源码分析(二)

引言 随着大数据的发展&#xff0c;任务调度系统成为了数据处理和管理中至关重要的部分。Apache DolphinScheduler 是一款优秀的开源分布式工作流调度平台&#xff0c;在大数据场景中得到广泛应用。 在本文中&#xff0c;我们将对 Apache DolphinScheduler 1.3.9 版本的源码进…

python安装第三方库的问题与解决方法

1 速度过慢 大部分第三方库都是在国外网站&#xff0c;如果直接使用pip install 包名&#xff0c;下载速度会很慢&#xff0c;这对一些大型包是很致命的&#xff0c;如果下载中断则需要重头再来。 解决方案&#xff1a;使用国内镜像&#xff08;如清华镜像下载&#xff09;&a…

Vue 脚手架学习

1.使用 Vue 脚手架 1.1 初始化脚手架 1.1.1 具体步骤 第一步&#xff08;仅第一次执行&#xff09;&#xff1a;全局安装vue/cli。 npm install -g vue/cli 第二步&#xff1a;切换到你要创建项目的目录&#xff0c;然后使用命令创建项目 vue create xxxx 第三步&#xff1a;启…

AI绘画Stable Diffusion XL优化终极指南!

前言 如何在自己的显卡上获得SDXL的最佳质量和性能&#xff0c;以及如何选择适当的优化方法和工具&#xff0c;这一让GenAI用户倍感困惑的问题&#xff0c;业内一直没有一份清晰而详尽的评测报告可供参考。直到全栈开发者Flix San出手。 在本文中&#xff0c;Flix介绍了相关SD…

9个热门.Net开源项目汇总!

今天盘点下9月份推荐的9个开源项目&#xff08;点击标题查看详情&#xff09;。 1、Pidgin&#xff1a;一个轻量级、快速且灵活的 C# 解析库 Pidgin是基于C#的开源项目&#xff0c;是一个解析组合器库&#xff0c;提供了一个高级别的声明性工具来构建解析器&#xff0c;使得编…

雅达利“美洲虎“游戏机在iPhone模拟应用程序中重生

"美洲虎"是雅达利在 1993 年推出一年后&#xff0c;索尼的 PlayStation 和世嘉的土星接手之前&#xff0c;在日益拥挤的家用游戏机市场上保持竞争力的最后一次尝试。 虽然从未在商业上取得成功&#xff0c;但它仍然拥有一批忠实的粉丝&#xff0c;他们欣赏美洲虎独特…

SpringBoot框架下的美发店管理系统开发指南

1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及&#xff0c;互联网成为人们查找信息的重要场所&#xff0c;二十一世纪是信息的时代&#xff0c;所以信息的管理显得特别重要。因此&#xff0c;使用计算机来管理美发门店管理系统的相关信息成为必然。开发…