1 传统RNN模型与LSTM
import torch
import torch.nn as nn
torch.manual_seed(8)
def dm01():
'''
参数1:输入向量的维数
参数2:隐藏层神经元的个数
参数3:隐藏层的层数
:return:
'''
rnn = nn.RNN(5, 6, 1)
'''
参数1:句子长度sequence_length
参数2:一个批次的样本数量batch_size
参数3:每个单词的向量维数vector_dim
'''
input = torch.randn(1, 3, 5)
'''
参数1:隐藏层的层数
参数2:一个批次的样本数量batch_size
参数3:隐层层神经元个数
'''
h0 = torch.randn(1, 3, 6)
output, hn = rnn(input, h0)
print(f'output-->{output.shape} {output}')
print(f'hn-->{hn.shape} {hn}')
print(f'rnn模型-->{rnn}')
def dm02():
rnn = nn.RNN(5, 6, 1)
input = torch.randn(4, 3, 5)
h0 = torch.randn(1, 3, 6)
output, hn = rnn(input, h0)
print(f'output-->{output.shape} {output}')
print(f'hn-->{hn.shape} {hn}')
print(f'rnn模型-->{rnn}')
def dm03():
rnn = nn.RNN(5, 6, 1)
input = torch.randn(4, 1, 5)
print(f'input {input}')
hidden = torch.zeros(1, 1, 6)
# 一个一个地送字符
for i in range(4):
tmp = input[i][0]
print(f'tmp.shape {tmp.shape}')
output, hidden = rnn(tmp.unsqueeze(0).unsqueeze(0), hidden)
print(f'{i} {output}')
print(f'{i} {hidden}')
print('*' * 80)
hidden = torch.zeros(1, 1, 6)
output, hn = rnn(input, hidden)
print(f'output2 {output} {output.shape}')
print(f'hn {hn} {hn.shape}')
# 改变隐藏层数
def dm04():
rnn = nn.RNN(5, 6, 2)
input = torch.randn(4, 3, 5)
h0 = torch.randn(2, 3, 6)
output, hn = rnn(input, h0)
print(f'output-->{output.shape} {output}')
print(f'hn-->{hn.shape} {hn}')
print(f'rnn模型-->{rnn}')
# 改变batch_size参数
def dm05():
rnn = nn.RNN(5, 6, 1, batch_first=True)
input = torch.randn(3, 4, 5)
h0 = torch.randn(1, 3, 6)
output, hn = rnn(input, h0)
print(f'output-->{output.shape} {output}')
print(f'hn-->{hn.shape} {hn}')
print(f'rnn模型-->{rnn}')
# LSTM
def dm06():
rnn = nn.LSTM(5, 6, 2)
input = torch.randn(1, 3, 5)
h0 = torch.randn(2, 3, 6)
c0 = torch.randn(2, 3, 6)
output, (hn, cn) = rnn(input, (h0, c0))
print(f'output {output}')
print(f'hn {hn}')
print(f'cn {cn}')
if __name__ == '__main__':
# dm01()
# dm02()
# dm03()
# dm04()
# dm05()
dm06()
D:\nlplearning\nlpbase\python.exe D:\nlpcoding\rnncode.py
output tensor([[[ 0.0207, -0.1121, -0.0706, 0.1167, -0.3322, -0.0686],
[ 0.1256, 0.1328, 0.2361, 0.2237, -0.0203, -0.2709],
[-0.2668, -0.2721, -0.2168, 0.4734, 0.2420, 0.0349]]],
grad_fn=<MkldnnRnnLayerBackward0>)
hn tensor([[[ 0.1501, -0.2106, 0.0213, 0.1309, 0.3074, -0.2038],
[ 0.3639, -0.0394, -0.1912, 0.1282, 0.0369, -0.1094],
[ 0.1217, -0.0517, 0.1884, -0.1100, -0.5018, -0.4512]],
[[ 0.0207, -0.1121, -0.0706, 0.1167, -0.3322, -0.0686],
[ 0.1256, 0.1328, 0.2361, 0.2237, -0.0203, -0.2709],
[-0.2668, -0.2721, -0.2168, 0.4734, 0.2420, 0.0349]]],
grad_fn=<StackBackward0>)
cn tensor([[[ 0.2791, -0.7362, 0.0501, 0.2612, 0.4655, -0.2338],
[ 0.7902, -0.0920, -0.4955, 0.3865, 0.0868, -0.1612],
[ 0.2312, -0.3736, 0.4033, -0.1386, -1.0151, -0.5971]],
[[ 0.0441, -0.2279, -0.1483, 0.3397, -0.5597, -0.4339],
[ 0.2154, 0.4119, 0.4723, 0.4731, -0.0284, -1.1095],
[-0.5016, -0.5146, -0.4286, 1.5299, 0.5992, 0.1224]]],
grad_fn=<StackBackward0>)
Process finished with exit code 0