来了,使用YOLOv11目标检测教程

news2024/10/9 7:15:35

来了,使用YOLOv11目标检测教程

概述

YOLO11 在 2024 年 9 月 27 日的 YOLO Vision 2024 活动中宣布:https://www.youtube.com/watch?v=rfI5vOo3-_A。

YOLO11 是 Ultralytics YOLO 系列的最新版本,结合了尖端的准确性、速度和效率,用于目标检测、分割、分类、定向边界框和姿态估计。与 YOLOv8 相比,它具有更少的参数和更好的结果,不难预见,YOLO11 在边缘设备上更高效、更快,将频繁出现在计算机视觉领域的最先进技术(SOTA)中。

主要特点

  • **增强的特征提取:**YOLO11 使用改进的主干和颈部架构来增强特征提取,以实现更精确的目标检测和复杂任务的性能。

  • **针对效率和速度优化:**精细的架构设计和优化的训练流程在保持准确性和性能之间最佳平衡的同时,提供更快的处理速度。

  • **更少的参数,更高的准确度:**YOLO11m 在 COCO 数据集上实现了比 YOLOv8m 更高的 mAP,参数减少了 22%,提高了计算效率,同时不牺牲准确度。

  • **跨环境的适应性:**YOLO11 可以无缝部署在边缘设备、云平台和配备 NVIDIA GPU 的系统上,确保最大的灵活性。

  • **支持广泛的任务范围:**YOLO11 支持各种计算机视觉任务,如目标检测、实例分割、图像分类、姿态估计和定向目标检测(OBB)。

本教程涵盖的步骤

  • 环境设置

  • 准备数据集

  • 训练模型

  • 验证模型

  • 在测试图像上运行推理

  • 结论

环境设置

你需要一个谷歌账户才能使用 Google Colab。我们使用 Colab 进行需要密集计算的任务,比如深度学习。由于我电脑的 GPU 不足,我需要激活 Colab 的 GPU 支持。

这样做之后,我们检查 gpu 活动。

它支持高达 16GB 的内存和 2560 CUDA 核心,以加速广泛的现代应用程序。然后执行此代码以动态确定工作目录并灵活管理文件路径。

import os
HOME = os.getcwd()

接下来,你需要下载 Ultralytics 包来加载和处理模型,以及用于数据集的 Roboflow 包。

!pip install ultralytics supervision roboflow


from ultralytics import YOLO
from roboflow import Roboflow

准备数据集

在这个项目中,我使用了 RF100 中包含的寄生虫数据集。我将在这个数据集中训练一个有 8 种不同寄生虫类别的目标检测模型。我将通过 Roboflow 处理标记、分类的图像。我经常在我的个人项目中使用这个开源平台。在处理现成的数据集时,你可以在数据集的健康分析部分快速获取大量关于数据的信息。例如,下面显示的类别平衡部分,我们可以看到 Hymenolepis 类别是代表不足的。

数据集相关链接:

https://universe.roboflow.com/roboflow-100/parasites-1s07h

https://universe.roboflow.com/roboflow-100

https://universe.roboflow.com/roboflow-100/parasites-1s07h/health

为了提高这个类别的准确性,你需要应用增强、过采样或调整类别权重。我们不会在本文中讨论这些主题,不用担心,但如果你对这些任务感兴趣,请随时联系我。如果有足够需求,我也可以分享我关于这些主题的详细工作。你可以下载并使用 Roboflow 环境中的任何开源项目,按照格式使用。在准备或选择数据集后,我们将在 Colab 环境中工作我们切换到 Colab 的原因是它提供免费的 16GB NVIDIA T4 GPU 使用。我在下面提到了这个问题。我们需要使用 Roboflow API 以 YOLOv8 格式导入我们的数据。让我们获取现成的代码片段和数据格式。

rf = Roboflow(api_key="your-api-key")
project = rf.workspace("roboflow-100").project("parasites-1s07h")
version = project.version(2)
dataset = version.download("yolov8")
!sed -i '$d' {dataset.location}/data.yaml   # Delete the last line
!sed -i '$d' {dataset.location}/data.yaml   # Delete the second-to-last line
!sed -i '$d' {dataset.location}/data.yaml   # Delete the third-to-last line


!echo 'test: ../test/images' >> {dataset.location}/data.yaml
!echo 'train: ../train/images' >> {dataset.location}/data.yaml
!echo 'val: ../valid/images' >> {dataset.location}/data.yaml

我们需要更新 data.yaml 格式,如下所示,以便以 YOLO11 格式进行训练。

!sed -i '$d' {dataset.location}/data.yaml   # Delete the last line
!sed -i '$d' {dataset.location}/data.yaml   # Delete the second-to-last line
!sed -i '$d' {dataset.location}/data.yaml   # Delete the third-to-last line


!echo 'test: ../test/images' >> {dataset.location}/data.yaml
!echo 'train: ../train/images' >> {dataset.location}/data.yaml
!echo 'val: ../valid/images' >> {dataset.location}/data.yaml

训练模型

让我们在我们的数据集上训练模型 40 个周期。作为这个项目的一部分,我通过 CLI 命令展示了训练。在如下所示的简单命令下定义后,训练开始。

!yolo task=detect mode=train model=yolo11s.pt data={dataset.location}/data.yaml epochs=40 imgsz=640 plots=True

你也可以使用 Python 创建它,以实现更灵活的场景。下面展示了示例 Python 训练代码:

from ultralytics import YOLO


# Load a COCO-pretrained YOLO11n model
model = YOLO("yolo11n.pt")


# Train the model on the COCO8 example dataset for 40 epochs
results = model.train(data="coco8.yaml", epochs=40, imgsz=640)

训练好的模型保存在 /runs/detect/train/weights 文件下的 best.pt。

一旦你的模型完成训练,你可以使用 YOLO11 生成的图表评估训练结果。

性能指标

混淆矩阵

**注意:**在训练模型时,回顾 Ultralytics 文档中“训练设置”部分的参数是有益的。这部分对您的训练过程至关重要。

验证模型

以下是使用 YOLO11 的 Val 模式的优势:

  • 精度:获取准确的指标,如 mAP50、mAP75 和 mAP50–95,全面评估你的模型。

  • 便利性:利用内置功能记住训练设置,简化验证过程。

  • 灵活性:使用相同或不同的数据集和图像大小验证你的模型。

  • 超参数调整:使用验证指标微调你的模型以获得更好的性能。

!yolo task=detect mode=val model={HOME}/runs/detect/train/weights/best.pt data={dataset.location}/data.yaml

Val 结果

一般评估:

  • 精确度、召回率和 mAP 指标相当高。

  • 尽管不同类别之间存在性能差异,但整体模型性能令人满意。

  • 在速度方面,这是一个有效的模型,推理时间很低。

在测试数据集上运行推理

让我们评估模型的泛化能力,看看它在之前未见过的测试数据集上的预测。

# predict mode for test data
!yolo task=detect mode=predict model={HOME}/runs/detect/train/weights/best.pt conf=0.25 source={dataset.location}/test/images save=True
# for visualization


latest_folder = max(glob.glob('/content/runs/detect/predict*/'), key=os.path.getmtime)
for img in glob.glob(f'{latest_folder}/*.jpg')[:1]:
    display(IPyImage(filename=img, width=600))
    print("\n")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2198409.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【CPP】类与多态

目录 15 类与多态15.1 如何理解多态15.2 动态绑定15.3 虚函数及重写的生效方式15.4 动态多态的生效方式15.5 坑15.6 协变15.7 析构函数的重写15.8 CPP11新增关键字15.8.1 override15.8.2 final 15.8 纯虚函数与抽象类15.9 虚函数表指针和虚函数表15.9.1 粗看虚函数表指针和虚函…

List子接口

1.特点:有序,有下标,元素可以重复 2.方法:包含Collection中的所有方法,还包括自己的独有的方法(API中查找) 还有ListIterator(迭代器),功能更强大。 包含更多…

一篇文章快速认识YOLO11 | 关键改进点 | 安装使用 | 模型训练和推理

前言 本文分享YOLO11的关键改进点、性能对比、安装使用、模型训练和推理等内容。 YOLO11 是 Ultralytics 最新的实时目标检测器,凭借更高的精度、速度和效率重新定义了可能性。 除了传统的目标检测外,YOLO11 还支持目标跟踪、实例分割、姿态估计、OBB…

ACM介绍

ACM介绍 1. ACM简介 ACM(Association for Computing Machinery,国际计算机学会)是世界上最大的计算机领域专业性学术组织,汇集了国际计算机领域教育家、研究人员、工业界人士及学生。ACM致力于提高在中国的活动的规格与影响力&a…

【微服务】—SpringBoot入门

⭐⭐⭐⭐⭐⭐ Github主页👉https://github.com/A-BigTree 笔记仓库👉https://github.com/A-BigTree/tree-learning-notes 个人主页👉https://www.abigtree.top ⭐⭐⭐⭐⭐⭐ 文章目录 1 SpringBoot快速入门1.1 SpringBoot简介1.1.1 简介1.1.2…

新电脑 Windows 系统初始配置

文章目录 前言1 前置配置2 安装软件2.1 通讯工具2.2 后端开发工具2.3 硬件开发工具2.4 前端开发工具2.4 其它工具 3 Windows 11 优化4 写在最后 前言 分区(个人习惯):1TB SSD 分为 2 个分区,一个 256GB 分区为系统盘,剩…

网络受限情况下安装openpyxl模块提示缺少Jdcal,et_xmlfile

1.工作需要处理关于Excel文件内容的东西 2.用公司提供的openpyxl模块总是提示缺少jdcal文件,因为网络管控,又没办法直接使用命令下载,所以网上找了资源,下载好后上传到个人资源里了 资源路径 openpyxl jdcal et_xmlfile 以上模块来源于:Py…

[已解决]Mac使用更改idea.vmoptions文件导致idea打不开

直接在访达中全局搜索 idea.vmoptions 文件,然后根据报错信息更改成默认的或者更改成默认的格式即可。

陪伴系统,会成为女性向游戏的下一个争夺点吗?

乙游提供给女性玩家的只有恋爱感吗? 一般来说,对于乙女游戏的概括常常以为玩家提供“恋爱陪伴感”为主,恋爱很好理解,通过与多位男主角的剧情互动来模拟在真实恋爱中的情感交互,当下乙游都将重点放在了营造恋爱感上。…

武汉正向科技|无人值守起重机,采用格雷母线定位系统,扎根智能制造工业

武汉正向科技开发的无人值守起重机系统在原起重机系统的基础上,利用格雷母线位置检测技术,信息技术,网络技术及传感器技术为起重机系统添加管理层,控制层和基础层。实现起重机智能化,无人化作业的库区综合管理系统。 正…

用AI构建小程序需要多久?效果如何?

随着移动互联网的快速发展,多端应用的需求日益增长。为了提高开发效率、降低成本并保证用户体验的一致性,前端跨端技术在如今的开发界使用已经非常普遍了,技术界较为常用的跨端技术有小程序技术、HTML5技术两大类。 2023年以来,伴…

antd-tree的半选回显,不联动父类节点,非严格模式下也可以

出现的问题,树节点在非严格模式下,如果回显,会自动选中父节点以下的所有节点 方案1 在请求回来前设置 check-strictly 为true,请求完成后,设置为 false,没生效 方案2 在请求回来回显的接口时,取没有childr…

[C++ 核心编程]笔记 1 内存分区模型

内存分区模型 C程序在执行时,将内存大方向划分为4个区域: 代码区: 存放函数体的二进制代码,由操作系统进行管理的。 全局区: 存放全局变量和静态变量以及常量。 栈区: 由编译器自动分配释放,存放函数的参数值、局部变量等。 堆…

Linux 之 Linux应用编程概念、文件IO、标准IO

Linux应用编程概念、文件IO、标准IO 学习任务: 1、 学习Linux 应用开发概念,什么是系统调用,什么是库函数 2、 学习文件IO:包括 read、write、open、close、lseek 3、 深入文件IO:错误处理、exit 等 4、 学习标准IO&a…

wsl环境下安装Ubuntu,并下载MySQL5.7

安装操作需root权限,切换root用户有两种方式: 1-通过 sudo su - ,切换到root用户(登录后长期有效)。 2-在每一个命令前加上sudo,临时提升权限(仅对一条命令有效)。 1、下载apt仓库…

【网络安全】利用XSS、OAuth配置错误实现token窃取及账户接管 (ATO)

未经许可,不得转载。 文章目录 正文正文 目标:target.com 在子域sub1.target.com上,我发现了一个XSS漏洞。由于针对该子域的漏洞悬赏较低,我希望通过此漏洞将攻击升级至app.target.com,因为该子域的悬赏更高。 分析认证机制后,我发现: sub1.target.com:使用基于Cook…

解决雪花ID在前端精度丢失问题

解决雪花ID在前端精度丢失问题 在现代分布式系统中,雪花算法(Snowflake)被广泛用于生成唯一的ID。这些ID通常是Long类型的整数。然而,当这些ID从后端传递到前端时,JavaScript的精度限制可能会导致精度丢失&#xff0c…

记录:Vscode 安装插件报:提取扩展出错 phpstudy中下载服务报网络异常

昨天出现了两个莫名其妙的问题: 一个是在phpstudy中下载服务的时候突然报了这个错误:当前网络不稳定,下载失败 不知道什么原因,从来也没见过 在网上找了一圈,没有解决,就放弃了 然后在刚刚,像用…

Photo Sphere Viewer:探索360°全景图的JavaScript库,轻松实现360°全景展示,探索360°全景世界的神奇之旅

嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和高效工作学习方法 你是否曾想过将360全景图嵌入到你的网站或应用中,为用户带来沉浸式的体验?Photo Sphere Viewer可以帮助你实现这个目标&#x…

打卡第六天 P10287 [GESP样题 七级] 最长不下降子序列

今天是我打卡第六天,做个普及/提高−题吧(#^.^#) 原题链接:[GESP样题 七级] 最长不下降子序列 - 洛谷 题目描述 输入格式 输出格式 输出一行一个整数表示答案。 输入输出样例 输入 #1 5 4 2 10 6 3 1 5 2 2 3 3 1 1 4 输出 #1 3 输入 #2 6 11 …