本文涉及知识点
C++堆(优先队列)
贪心(决策包容性)
LeetCode 2233. K 次增加后的最大乘积
给你一个非负整数数组 nums 和一个整数 k 。每次操作,你可以选择 nums 中 任一 元素并将它 增加 1 。
请你返回 至多 k 次操作后,能得到的 nums的 最大乘积 。由于答案可能很大,请你将答案对 109 + 7 取余后返回。
示例 1:
输入:nums = [0,4], k = 5
输出:20
解释:将第一个数增加 5 次。
得到 nums = [5, 4] ,乘积为 5 * 4 = 20 。
可以证明 20 是能得到的最大乘积,所以我们返回 20 。
存在其他增加 nums 的方法,也能得到最大乘积。
示例 2:
输入:nums = [6,3,3,2], k = 2
输出:216
解释:将第二个数增加 1 次,将第四个数增加 1 次。
得到 nums = [6, 4, 3, 3] ,乘积为 6 * 4 * 3 * 3 = 216 。
可以证明 216 是能得到的最大乘积,所以我们返回 216 。
存在其他增加 nums 的方法,也能得到最大乘积。
提示:
1 <= nums.length, k <= 105
0 <= nums[i] <= 106
堆(优先队列)
贪心:k次操作,每次选择最小的数+1。操作后按升序排序res。下面来证明正确性:
某方案后,升序排序后结果是res1。如果方案不同,至少存在一个
res1[i1] < res[i1] res1[i2] > res[i2] i1 < i2。 res1[i1] < res[i1] <= res[i2] < res1[i2]。
将res1[i1]++ res1[i2]-- ,结果变大。++变成 (res1[i1]+1)/res1[i1] ; --变成 res1[i2]/(res1[i2]-1)
两者相除:y= (res1[i1]+1)*(res1[i2]-1)/res1[i1]res1[i2]
(res1[i1]res1[i2] +(res1[i2]-res1[i1])-1)/res1[i1]res1[i2]
由于res1[i2] > res1[i1] 故 (res1[i2]-res1[i1])-1) >=0,即y >= 1,即变大或不变。
代码
核心代码
template<int MOD = 1000000007>
class C1097Int
{
public:
C1097Int(long long llData = 0) :m_iData(llData% MOD)
{
}
C1097Int operator+(const C1097Int& o)const
{
return C1097Int(((long long)m_iData + o.m_iData) % MOD);
}
C1097Int& operator+=(const C1097Int& o)
{
m_iData = ((long long)m_iData + o.m_iData) % MOD;
return *this;
}
C1097Int& operator-=(const C1097Int& o)
{
m_iData = (m_iData + MOD - o.m_iData) % MOD;
return *this;
}
C1097Int operator-(const C1097Int& o)
{
return C1097Int((m_iData + MOD - o.m_iData) % MOD);
}
C1097Int operator*(const C1097Int& o)const
{
return((long long)m_iData * o.m_iData) % MOD;
}
C1097Int& operator*=(const C1097Int& o)
{
m_iData = ((long long)m_iData * o.m_iData) % MOD;
return *this;
}
C1097Int operator/(const C1097Int& o)const
{
return *this * o.PowNegative1();
}
C1097Int& operator/=(const C1097Int& o)
{
*this /= o.PowNegative1();
return *this;
}
bool operator==(const C1097Int& o)const
{
return m_iData == o.m_iData;
}
bool operator<(const C1097Int& o)const
{
return m_iData < o.m_iData;
}
C1097Int pow(long long n)const
{
C1097Int iRet = 1, iCur = *this;
while (n)
{
if (n & 1)
{
iRet *= iCur;
}
iCur *= iCur;
n >>= 1;
}
return iRet;
}
C1097Int PowNegative1()const
{
return pow(MOD - 2);
}
int ToInt()const
{
return m_iData;
}
private:
int m_iData = 0;;
};
class Solution {
public:
int maximumProduct(vector<int>& nums, int k) {
std::priority_queue<int,vector<int>,greater<>> minHeap(nums.begin(),nums.end());
while (k--) {
auto cur = minHeap.top()+1;
minHeap.pop();
minHeap.emplace(cur);
}
C1097Int<> ret = 1;
while (minHeap.size()) {
ret *= minHeap.top();
minHeap.pop();
}
return ret.ToInt();
}
};
单元测试
vector<int> nums;
int k;
TEST_METHOD(TestMethod11)
{
nums = { 0, 4 }, k = 5;
auto res = Solution().maximumProduct(nums, k);
AssertEx(20, res);
}
TEST_METHOD(TestMethod12)
{
nums = { 6,3,3,2 }, k =2;
auto res = Solution().maximumProduct(nums, k);
AssertEx(216, res);
}
扩展阅读
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。