C++(11)——vector的具体实现

news2024/11/24 13:20:44

目录

1.函数的头文件

2.默认成员函数

2.1构造函数

2.1.1无参的构造函数

2.1.2支持迭代器的构造函数

2.1.3支持n个val的构造函数

2.2拷贝构造函数

2.2.1写法一(传统写法)

2.2.2写法二(现代写法)

2.3赋值运算符重载函数

2.3.1写法一(传统写法)

2.3.2写法二(现代写法)

2.4析构函数

3.迭代器相关函数

4.容量及大小相关函数

4.1size和capacity

4.2reserve

4.3resize

4.4empty

5.修改内容的相关函数

5.1push_back

5.2pop_back

5.3insert

5.4erase

5.5swap

6.访问相关函数


1.函数的头文件

namespace bt
{
	//模拟实现vector
	template<class T>
	class vector
	{
	public:
		typedef T* iterator;
		typedef const T* const_iterator;

		//默认成员函数
		vector();                                           //构造函数
		vector(size_t n, const T& val);                     //构造函数
		template<class InputIterator>                      
		vector(InputIterator first, InputIterator last);    //构造函数
		vector(const vector<T>& v);                         //拷贝构造函数
		vector<T>& operator=(const vector<T>& v);           //赋值运算符重载函数
		~vector();                                          //析构函数

		//迭代器相关
		iterator begin();
		iterator end();
		const_iterator begin()const;
		const_iterator end()const;

		//容量和大小相关
		size_t size()const;
		size_t capacity()const;
		void reserve(size_t n);
		void resize(size_t n, const T& val = T());
		bool empty()const;

		//修改容器相关
		void push_back(const T& x);
		void pop_back();
		void insert(iterator pos, const T& x);
		iterator erase(iterator pos);
		void swap(vector<T>& v);

		//访问容器相关函数
		T& operator[](size_t i);
		const T& operator[](size_t i)const;

	private:
		iterator _start;        //指向容器的头
		iterator _finish;       //指向有效数据的尾
		iterator _endofstorage; //指向容器的尾
	};
}

2.默认成员函数

2.1构造函数

2.1.1无参的构造函数

对于这个函数,我们直接将它的三个变量设成空指针即可。

代码:

vector()
	:_start(nullptr)
	, _finish(nullptr)
	, _endofstorage(nullptr)
{}

2.1.2支持迭代器的构造函数

vector还支持使用一段迭代器区间进行对象的构造。因为该迭代器区间可以是其他容器的迭代器区间,也就是说该函数接收到的迭代器的类型是不确定的,所以我们这里需要将该构造函数设计为一个函数模板。

代码:

template<class InputIterator> //模板函数
vector(InputIterator first, InputIterator last)
	:_start(nullptr)
	, _finish(nullptr)
	, _endofstorage(nullptr)
{
	//将迭代器区间的数据一个个尾插到容器当中
	while (first != last)
	{
		push_back(*first);
		first++;
	}
}

2.1.3支持n个val的构造函数

vector还支持构造这样一种容器,该容器当中含有n个值为val的数据。对于该构造函数,我们可以先使用reserve函数将容器容量先设置为n,然后使用push_back函数尾插n个值为val的数据到容器当中即可。

vector(size_t n, const T& val)
	:_start(nullptr)
	, _finish(nullptr)
	, _endofstorage(nullptr)
{
	reserve(n); //调用reserve函数将容器容量设置为n
	for (size_t i = 0; i < n; i++) //尾插n个值为val的数据到容器当中
	{
		push_back(val);
	}
}

特别注明:该构造函数还需要实现两个重载函数

vector(long n, const T& val)
	:_start(nullptr)
	, _finish(nullptr)
	, _endofstorage(nullptr)
{
	reserve(n); 
	for (size_t i = 0; i < n; i++) //尾插n个值为val的数据到容器当中
	{
		push_back(val);
	}
}
vector(int n, const T& val)
	:_start(nullptr)
	, _finish(nullptr)
	, _endofstorage(nullptr)
{
	reserve(n);
	for (int i = 0; i < n; i++) //尾插n个值为val的数据到容器当中
	{
		push_back(val);
	}
}

这样做的目的是防止以下事情发生:

vector<int> v(5, 7); 

这个代码会和构造函数2.1.2相匹配,因为构造函数2.1.2当中对参数first和last进行了解引用(而int类型不能进行解引用操作)而报错。

2.2拷贝构造函数

与string类相同,这里也存在深浅拷贝的问题,也同样有两种写法:

2.2.1写法一(传统写法)

思路:先开辟一块与该容器大小相同的空间,然后将该容器当中的数据一个个拷贝过来即可,最后更新_finish和_endofstorage的值即可。

vector(const vector<T>& v)
	:_start(nullptr)
	, _finish(nullptr)
	, _endofstorage(nullptr)
{
	_start = new T[v.capacity()]; //开辟一块和容器v大小相同的空间
	for (size_t i = 0; i < v.size(); i++) //将容器v当中的数据一个个拷贝过来
	{
		_start[i] = v[i];//这里相当于调用了string类的赋值运算符重载函数来进行深拷贝
	}
	_finish = _start + v.size(); //容器有效数据的尾
	_endofstorage = _start + v.capacity(); //整个容器的尾
}

特别注意:
此处的拷贝不可以用memcpy函数,当vector存储的数据是内置类型或无需进行深拷贝的自定义类型时,使用memcpy函数是没什么问题的,但当vector存储的数据是需要进行深拷贝的自定义类型时,使用memcpy函数的弊端就体现出来了。

如果此时我们使用的是memcpy函数进行拷贝构造的话,那么拷贝构造出来的vector当中存储的每个string的成员变量的值,将与被拷贝的vector当中存储的每个string的成员变量的值相同,即两个vector当中的每个对应的string成员都指向同一个字符串空间。

相当于原来指针指向的空间和mencopy出来的vector的指针指向同一个空间,不满足深拷贝的要求。

那么所给代码是如何解决这个问题的呢?

代码中看似是使用普通的“=”将容器当中的数据一个个拷贝过来,实际上是调用了所存元素的赋值运算符重载函数,而string类的赋值运算符重载函数就是深拷贝  

总结一下:如果vector当中存储的元素类型是内置类型(如int)或浅拷贝的自定义类型(如Date),使用memcpy函数进行进行拷贝构造是没问题的,但如果vector当中存储的元素类型是深拷贝的自定义类型(如string),则使用memcpy函数将不能达到我们想要的效果。

2.2.2写法二(现代写法)

思路:使用范围for(或是其他遍历方式)对容器v进行遍历,在遍历过程中将容器v中存储的数据一个个尾插过来即可。

vector(const vector<T>& v)
	:_start(nullptr)
	, _finish(nullptr)
	, _endofstorage(nullptr)
{
	reserve(v.capacity()); //调用reserve函数将容器容量设置为与v相同
	for (auto e : v) //将容器v当中的数据一个个尾插过来
	{
		push_back(e);
	}
}

注意: 在使用范围for对容器v进行遍历的过程中,变量e就是每一个数据的拷贝,然后将e尾插到构造出来的容器当中。就算容器v当中存储的数据是string类,在e拷贝时也会自动调用string的拷贝构造(深拷贝),所以也能够避免出现与使用memcpy时类似的问题。

2.3赋值运算符重载函数

vector的赋值运算符重载当然也涉及深拷贝问题,我们这里也提供两种深拷贝的写法:

2.3.1写法一(传统写法)

首先判断是否是给自己赋值,若是给自己赋值则无需进行操作。若不是给自己赋值,则先开辟一块和容器v大小相同的空间,然后将容器v当中的数据一个个拷贝过来,最后更新_finish和 _endofstorage的值即可。

vector<T>& operator=(const vector<T>& v)
{
	if (this != &v) //防止自己给自己赋值
	{
		delete[] _start; //释放原来的空间
		_start = new T[v.capacity()]; //开辟一块和容器v大小相同的空间
		for (size_t i = 0; i < v.size(); i++) //将容器v当中的数据一个个拷贝过来
		{
			_start[i] = v[i];
		}
		_finish = _start + v.size(); //容器有效数据的尾
		_endofstorage = _start + v.capacity(); //整个容器的尾
	}
	return *this; //支持连续赋值
}

特别注意:这里也能用memcpy,理由同上。

2.3.2写法二(现代写法)

赋值运算符重载的现代写法非常精辟,首先在右值传参时并没有使用引用传参,因为这样可以间接调用vector的拷贝构造函数,然后将这个拷贝构造出来的容器v与左值进行交换,此时就相当于完成了赋值操作,而容器v会在该函数调用结束时自动析构。

vector<T>& operator=(vector<T> v) //编译器接收右值的时候自动调用其拷贝构造函数
{
	swap(v); //交换这两个对象
	return *this; //支持连续赋值
}

注: 赋值运算符重载的现代写法也是进行的深拷贝,只不过是调用的vector的拷贝构造函数进行的深拷贝,在赋值运算符重载函数当中仅仅是将深拷贝出来的对象与左值进行了交换而已。

2.4析构函数

先要判空一下。

~vector()
{
	if (_start) //避免对空指针进行释放
	{
		delete[] _start; //释放容器存储数据的空间
		_start = nullptr; //_start置空
		_finish = nullptr; //_finish置空
		_endofstorage = nullptr; //_endofstorage置空
	}
}

3.迭代器相关函数

begin函数返回容器的首地址,end函数返回容器当中有效数据的下一个数据的地址。

iterator begin()
{
	return _start; //返回容器的首地址
}
iterator end()
{
	return _finish; //返回容器当中有效数据的下一个数据的地址
}

 const版:

const_iterator begin()const
{
	return _start; //返回容器的首地址
}
const_iterator end()const
{
	return _finish; //返回容器当中有效数据的下一个数据的地址
}

vector使用迭代器实际上就是使用指针遍历容器。

vector<int> v(5, 3);
vector<int>::iterator it = v.begin();
while (it != v.end())
{
	cout << *it << " ";
	it++;
}
cout << endl;

现在我们实现了迭代器,实际上也就可以使用范围for遍历容器了,因为编译器在编译时会自动将范围for替换为迭代器的形式。

vector<int> v(5, 3);
//范围for进行遍历
for (auto e : v)
{
	cout << e << " ";
}
cout << endl;

4.容量及大小相关函数

4.1size和capacity

由于两个指针相减的结果,就是这两个指针之间对应类型的数据个数,所以size可以由_finish - _start得到,而capacity可以由_endofstorage - _start得到。

size_t size()const
{
	return _finish - _start; //返回容器当中有效数据的个数
}
size_t capacity()const
{
	return _endofstorage - _start; //返回当前容器的最大容量
}

4.2reserve

reserve规则:(和之前的一样)
 1、当n大于对象当前的capacity时,将capacity扩大到n或大于n。
 2、当n小于对象当前的capacity时,什么也不做。

reserve函数的实现思路也是很简单的,先判断所给n是否大于当前容器的最大容量(否则无需进行任何操作),操作时直接开辟一块可以容纳n个数据的空间,然后将原容器当中的有效数据拷贝到该空间,之后将原容器存储数据的空间释放,并将新开辟的空间交给该容器维护,最好更新容器当中各个成员变量的值即可。

void reserve(size_t n)
{
	if (n > capacity()) //判断是否需要进行操作
	{
		size_t sz = size(); //记录当前容器当中有效数据的个数
		T* tmp = new T[n]; //开辟一块可以容纳n个数据的空间
		if (_start) //判断是否为空容器
		{
			for (size_t i = 0; i < sz; i++) 
			{
				tmp[i] = _start[i];
			}
			delete[] _start; //将容器本身存储数据的空间释放
		}
		_start = tmp; 
		_finish = _start + sz; //容器有效数据的尾
		_endofstorage = _start + n; //整个容器的尾
	}
}

注意:

1.在操作之前要记录有效数据的个数

因为我们最后需要更新_finish指针的指向,而_finish指针的指向就等于_start指针加容器当中有效数据的个数,当_start指针的指向改变后我们再调用size函数通过_finish - _start计算出的有效数据的个数就是一个随机值了。

2.不能使用memcpy函数

当vector当中存储的是string的时候,虽然使用memcpy函数reserve出来的容器与原容器当中每个对应的string成员都指向同一个字符串空间,但是原容器存储数据的空间不是已经被释放了,相当于现在只有一个容器维护这这些字符串空间,这还有什么影响。但是,当你释放原容器空间的时候,string也会调用析构函数,所以使用memcpy函数reserve出来的容器当中的每一个string所指向的字符串实际上是一块已经被释放的空间,会造成非法访问。

4.3resize

resize规则:
 1、当n大于当前的size时,将size扩大到n,扩大的数据为val,若val未给出,则默认为容器所存储类型的默认构造函数所构造出来的值。
 2、当n小于当前的size时,将size缩小到n。

void resize(size_t n, const T& val = T())
{
	if (n < size()) //当n小于当前的size时
	{
		_finish = _start + n; //将size缩小到n
	}
	else //当n大于当前的size时
	{
		if (n > capacity()) //判断是否需要增容
		{
			reserve(n);
		}
		while (_finish < _start + n) //将size扩大到n
		{
			*_finish = val;
			_finish++;
		}
	}
}

注意:const T& val = T(),c++中内置类型也可以看作一个类。

4.4empty

bool empty()const
{
	return _start == _finish;
}

5.修改内容的相关函数

5.1push_back

首先得判断容器是否已满,若已满则需要先进行增容,然后将数据尾插到_finish指向的位置,再将_finish++即可。

void push_back(const T& x)
{
	if (_finish == _endofstorage) //判断是否需要增容
	{
		size_t newcapacity = capacity() == 0 ? 4 : 2 * capacity(); //将容量扩大为原来的两倍
		reserve(newcapacity); //增容
	}
	*_finish = x; //尾插数据
	_finish++; //_finish指针后移
}

5.2pop_back

void pop_back()
{
	assert(!empty()); //容器为空则断言
	_finish--; //_finish指针前移
}

5.3insert

insert函数可以在所给迭代器pos位置插入数据,在插入数据前先判断是否需要增容,然后将pos位置及其之后的数据统一向后挪动一位,以留出pos位置进行插入,最后将数据插入到pos位置即可

代码:

void insert(iterator pos, const T& x)
{
	if (_finish == _endofstorage) //判断是否需要增容
	{
		size_t len = pos - _start; //记录pos与_start之间的间隔
		size_t newcapacity = capacity() == 0 ? 4 : 2 * capacity(); //将容量扩大为原来的两倍
		reserve(newcapacity);
		pos = _start + len; 
	}
	//将pos位置及其之后的数据统一向后挪动一位,以留出pos位置进行插入
	iterator end = _finish;
	while (end >= pos + 1)
	{
		*end = *(end - 1);
		end--;
	}
	*pos = x; //将数据插入到pos位置
	_finish++; //数据个数增加一个,_finish后移
}

注意:同上,若需要增容,则需要在增容前记录pos与_start之间的间隔,然后通过该间隔确定在增容后的容器当中pos的指向,否则pos还指向原来被释放的空间。

5.4erase

erase函数可以删除所给迭代器pos位置的数据,在删除数据前需要判断容器释放为空,若为空则需做断言处理,删除数据时直接将pos位置之后的数据统一向前挪动一位,将pos位置的数据覆盖即可。

iterator erase(iterator pos)
{
	assert(!empty()); 
	//将pos位置之后的数据统一向前挪动一位,以覆盖pos位置的数据
	iterator it = pos + 1;
	while (it != _finish)
	{
		*(it - 1) = *it;
		it++;
	}
	_finish--; //数据个数减少一个,_finish前移
	return pos;
}

5.5swap

和string一样,我们可以直接调用库当中的swap函数将两个容器当中的各个成员变量进行交换即可。

void swap(vector<T>& v)
{
	::swap(_start, v._start);
	::swap(_finish, v._finish);
	::swap(_endofstorage, v._endofstorage);
}

6.访问相关函数

operator[ ]

vector也支持我们使用“下标+[ ]”的方式对容器当中的数据进行访问,实现时直接返回对应位置的数据即可。

T& operator[](size_t i)
{
	assert(i < size()); //检测下标的合法性

	return _start[i]; //返回对应数据
}
const版
const T& operator[](size_t i)const
{
	assert(i < size()); //检测下标的合法性

	return _start[i]; //返回对应数据
}

注意: 重载运算符[ ]时需要重载一个适用于const容器的,因为const容器通过“下标+[ ]”获取到的数据只允许进行读操作,不能对数据进行修改。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2193756.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PGMP01-概述

1.项目集管理绩效域 2.项目集管理标准的目的 the purpose of the standard for program management 定义&#xff1a;为项目集管理原则、时间和活动提供指导。这些原则、实践和活动被公认为在大多时候适用于大多数项目集&#xff0c;并为项目集管理的良好实践提供了支持。 管理…

tldr命令介绍

tldr命令介绍 安装 TLDR使用 TLDR更新命令仓库 TLDR 是 “Too Long; Didn’t Read” 的缩写&#xff0c;在 Linux中是一个非常有用的工具&#xff0c;旨在为用户提供简洁的命令行工具或程序的使用说明&#xff0c;TLDR的目标是解决传统手册页信息过于繁杂的问题&#xff0c;通过…

独享动态IP是什么?它有什么独特优势吗?

在网络世界中&#xff0c;IP地址扮演着连接互联网的关键角色。随着互联网的发展&#xff0c;不同类型的IP地址也应运而生&#xff0c;其中独享动态ip作为一种新型IP地址&#xff0c;备受关注。本文将围绕它的定义及其独特优势展开探讨&#xff0c;以帮助读者更好地理解和利用这…

使用keras-tuner微调神经网络超参数

目录 随机搜索RandomSearch HyperBand 贝叶斯优化BayesianOptimization 附录 本文将介绍keras-tuner提供了三种神经网络超参数调优方法。它们分别是随机搜索RandomSearch、HyperBand和贝叶斯优化BayesianOptimization。 首先需要安装keras-tuner依赖库,安装命令如…

State of ChatGPT ---- ChatGPT的技术综述

声明&#xff1a;该文总结自AI菩萨Andrej Karpathy在youtube发布的演讲视频。 原视频连接&#xff1a;State of GPT | BRK216HFS 基础知识&#xff1a; Transformer原文带读与代码实现https://blog.csdn.net/m0_62716099/article/details/141289541?spm1001.2014.3001.5501 H…

【GT240X】【06】Linux文本编辑软件vim

目录 一、说明 二、什么是 vim&#xff1f; 三、vi/vim 的使用 3.1 命令模式 3.2 输入模式 3.3 底线命令模式 四、vi/vim 按键说明 4.1 一般模式可用的光标移动、复制粘贴、搜索替换等 4.2 一般模式切换到编辑模式的可用的按钮说明 4.3 一般模式切换到指令行模式的…

案例-博客页面简单实现

文章目录 本文内容只涉及前端1. 内容要求2. 画面展示初始化面演示视频 3. 注意事项4. 代码区js文件夹下的jquery.min.js内容登录代码列表页面创作页面 本文内容只涉及前端 1. 内容要求 登录页面实现博客列表页面实现博客创作页面实现 链接: 开源在线 Markdown 编辑器文本框可…

布草洗涤厂自动统计单据管理打包标签———未来之窗行业应用跨平台架构

一、布草洗涤厂打包标签 二、大酒店楼层送货单 三、独立三联单销售单 四、职员司机统计报表 五、开通方法 扫码开通

大数据新视界 --大数据大厂之 从 Druid 和 Kafka 到 Polars:大数据处理工具的传承与创新

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

[SAP ABAP] 程序调用

示例数据 学生表(ZDBT_STU_437) 程序&#xff1a; Z437_TEST_20241006 代码如下所示 REPORT Z437_TEST_20241006.* 创建跟表或结构同名的工作区 TABLES: zdbt_stu_437.SELECTION-SCREEN BEGIN OF BLOCK b1 WITH FRAME TITLE TEXT-001.PARAMETERS: p_1 TYPE c LENGTH 4.SELECT-O…

低组装滚珠导轨:承载力强,适应多样工况!

在自动化行业中&#xff0c;高质量、高效率的生产线是确保产品品质和生产效率的关键。而低组装型滚珠导轨作为生产线中的重要组件之一&#xff0c;能够提供精准的直线运动控制&#xff0c;为自动化设备的稳定运行和高精度检测提供可靠支持。 相对于传统的导轨系统来说&#xff…

网站集群批量管理-Ansible-模块管理

1. 概述 1. 自动化运维: 批量管理,批量分发,批量执行,维护 2. 无客户端,基于ssh进行管理与维护 2. 环境准备 环境主机ansible10.0.0.7(管理节点)nfs01 10.0.0.31(被管理节点)backup10.0.0.41(被管理节点) 2.1 创建密钥认证 安装sshpass yum install -y sshpass #!/bin/bash ##…

Renesas R7FA8D1BH (Cortex®-M85)和蓝牙模块通信

目录 概述 1 软硬件 1.1 软硬件环境信息 1.2 开发板信息 1.3 调试器信息 2 硬件架构 2.1 系统架构 2.2 蓝牙模块介绍 3 软件实现 3.1 FSP配置参数 3.2 代码实现 3.2.1 驱动函数 3.2.2 功能函数 概述 本文主要介绍Renesas R7FA8D1BH (Cortex-M85)和蓝牙模块通信的…

【leetcode】274.H指数

为了方便&#xff0c;将 citations 记为 cs。 所谓的 h 指数是指一个具体的数值&#xff0c;该数值为“最大”的满足「至少发表了 x 篇论文&#xff0c;且每篇论文至少被引用 x 次」定义的合法数&#xff0c;重点是“最大”。 用题面的实例 1 来举个 &#x1f330;&#xff0…

hackmyvm-BaseME靶机

主机发现 sudo arp-scan -l 扫描到本地网络靶机ip:192.168.91.173 nmap扫描 sudo nmap 192.168.91.173 发现靶机开放22端口的ssh服务与80端口的http服务 base64加密 我们访问一下80端口&#xff0c;发现了一串加密信息&#xff0c;判读大概是base64加密 base64加密特征&…

软件无线电4-位同步

在数字通信系统中&#xff0c;同步主要有三种方式&#xff0c;载波同步、位同步和群同步。载波同步指在相干解调时&#xff0c;接收机的解调器需要产生一个与调制载波同频同相的相干载波。载波同步又称为载波恢复。位同步指接收机需要产生一个与调制信号符号速率相同&#xff0…

【stm32】ADC的介绍与使用

ADC的介绍与使用 1、ADC介绍2、逐次逼近型ADC3、ADC电路4、ADC基本结构程序代码编写&#xff1a;ADC 通道和引脚复用的关系 5、转换模式&#xff08;1&#xff09;单次转换&#xff0c;非扫描模式转换流程&#xff1a;程序编写&#xff1a; &#xff08;2&#xff09;连续转换&…

Android一个APP里面最少有几个线程

Android一个APP里面最少有几个线程 参考 https://www.jianshu.com/p/92bff8d6282f https://www.jianshu.com/p/8a820d93c6aa 线程查看 Android一个进程里面最少包含5个线程&#xff0c;分别为&#xff1a; main线程(主线程&#xff09;FinalizerDaemon线程 终结者守护线程…

pg 视图

1.概念 2.创建 3.修改 3.删除 4.递归

【量子计算】开辟全新计算范式

1. &#x1f680; 引言1.1 &#x1f680; 量子计算的现状与发展趋势1.2 &#x1f4dc; 量子位、量子门和量子电路的基本概念1.3 &#x1f3c6; 量子计算在科学研究中的作用 2. &#x1f50d; 量子计算的演变与创新2.1 &#x1f31f; 量子计算的发展历程2.2 &#x1f9e0; 量子算…