大数据毕业设计选题推荐-NBA球员数据分析系统-Python数据可视化-Hive-Hadoop-Spark

news2024/11/30 12:51:47

作者主页:IT毕设梦工厂✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、PHP、.NET、Node.js、GO、微信小程序、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

  • 一、前言
  • 二、开发环境
  • 三、系统界面展示
  • 四、部分代码设计
  • 五、论文参考
  • 六、系统视频
  • 结语

一、前言

NBA作为全球最具影响力的职业篮球联盟,其数据分析在近年来受到越来越多的关注。据统计,2022-2023赛季NBA常规赛共产生1230场比赛,涉及30支球队和数百名球员,每场比赛平均产生超过400个数据点。这些海量数据涵盖了得分、篮板、助攻等常规统计,以及进阶数据如真实命中率、使用率等。NBA官方数据显示,2022年有超过10亿粉丝通过各种渠道关注NBA赛事,其中数据分析内容的需求量年增长率超过20%。然而,面对如此庞大的数据资源,传统的数据处理方法难以应对其复杂性和动态性。据调查,超过70%的NBA爱好者表示难以高效获取和分析所需的球员和球队数据。同时,随着深度学习技术的发展,数据分析在球员选秀、战术制定和伤病预防等方面的应用潜力日益凸显。NBA联盟报告指出,利用数据分析的球队在比赛中的胜率平均提高了8%。因此,开发一个专门的NBA球员数据分析系统,对于提升球迷体验、辅助球队决策和推动篮球运动发展具有重要意义。

NBA球员数据分析系统的开发和应用价值主要体现在以下几个方面:球迷体验提升方面,该系统通过直观的数据可视化和深入的统计分析,为球迷提供更丰富、更专业的观赛体验,增强其对比赛和球员表现的理解。球队决策支持方面,系统通过分析球员数据和团队表现,为教练和管理层提供科学的决策依据,优化阵容配置和战术安排。球员发展方面,通过对个人数据的全面分析,系统能够帮助球员识别自身优势和不足,制定有针对性的训练计划。商业价值挖掘方面,数据分析结果可用于球员市场价值评估、赞助商合作等商业决策,提升联盟和球队的经济效益。媒体报道支持方面,系统为体育媒体提供丰富的数据素材和分析视角,提高报道的专业性和吸引力。教育研究方面,该系统为体育管理、数据科学等领域的研究者和学生提供了宝贵的实践平台,促进相关学科的发展。综上所述,NBA球员数据分析系统的开发不仅能够提升篮球运动的观赏性和竞技水平,还能推动体育产业的数字化转型,对于促进篮球文化传播和体育产业发展具有重要的现实意义。

二、开发环境

  • 开发语言:Java/Python
  • 数据库:MySQL
  • 系统架构:B/S
  • 后端:SpringBoot/SSM/Django/Flask
  • 前端:Vue

三、系统界面展示

  • NBA球员数据分析系统-Python数据可视化系统界面展示:
    在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

四、部分代码设计

  • 项目实战-代码参考:
@require_http_methods(["GET"])
def player_stats(request):
    players = Player.objects.annotate(
        avg_points=Avg('gamestats__points'),
        avg_rebounds=Avg('gamestats__rebounds'),
        avg_assists=Avg('gamestats__assists')
    ).values('name', 'team__name', 'avg_points', 'avg_rebounds', 'avg_assists')
    
    return JsonResponse(list(players), safe=False)

@require_http_methods(["GET"])
def team_rankings(request):
    teams = Team.objects.annotate(
        wins=Count('gamestats', filter=models.Q(gamestats__result='W')),
        losses=Count('gamestats', filter=models.Q(gamestats__result='L')),
        total_points=Sum('gamestats__points')
    ).values('name', 'wins', 'losses', 'total_points')
    
    return JsonResponse(list(teams), safe=False)

@require_http_methods(["GET"])
def player_wordcloud(request):
    players = Player.objects.annotate(
        score=Sum('gamestats__points')
    ).values('name', 'score')
    
    return JsonResponse(list(players), safe=False)
# 初始化Spark会话
spark = SparkSession.builder \
    .appName("NBA Big Data Analysis") \
    .getOrCreate()

# 读取数据
df = spark.read.csv("path/to/nba_data.csv", header=True, inferSchema=True)

# 计算每个球员的高级统计数据
player_stats = df.groupBy("player_name", "team_name") \
    .agg(
        avg("points").alias("avg_points"),
        avg("rebounds").alias("avg_rebounds"),
        avg("assists").alias("avg_assists"),
        count("*").alias("games_played"),
        sum("points").alias("total_points"),
        sum("rebounds").alias("total_rebounds"),
        sum("assists").alias("total_assists")
    )

# 计算球员效率值
player_efficiency = player_stats.withColumn(
    "efficiency",
    (col("total_points") + col("total_rebounds") + col("total_assists")) / col("games_played")
)

# 获取效率最高的前20名球员
top_players = player_efficiency.orderBy(col("efficiency").desc()).limit(20)

# 将结果保存到CSV文件
top_players.write.csv("path/to/top_players_efficiency.csv", header=True, mode="overwrite")

# 关闭Spark会话
spark.stop()

五、论文参考

  • 计算机毕业设计选题推荐-NBA球员数据分析系统-Python数据可视化系统-论文参考:
    在这里插入图片描述

六、系统视频

  • NBA球员数据分析系统-Python数据可视化系统-项目视频:

大数据毕业设计选题推荐-NBA球员数据分析系统-Python数据可视化-Hive-Hadoop-Spark

结语

大数据毕业设计选题推荐-NBA球员数据分析系统-Python数据可视化-Hive-Hadoop-Spark
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:⬇⬇⬇

精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2191621.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

知识图谱入门——9: spaCy中命名实体识别(NER)任务中的预定义标签详解及案例(GPE、MONEY、PRODUCT、LAW、FAC、NORP是什么?)

命名实体识别(NER, Named Entity Recognition)是自然语言处理(NLP)中的重要任务之一,旨在从文本中识别出特定的实体,如人名、地名、时间等。spaCy 是一个广泛使用的 NLP 库,它提供了预训练的模型…

数据结构之排序(5)

摘要:本文主要讲各种排序算法,注意它们的时间复杂度 概念 将各元素按关键字递增或递减排序顺序重新排列 评价指标 稳定性: 关键字相同的元素经过排序后相对顺序是否会改变 时间复杂度、空间复杂度 分类 内部排序——数据都在内存中 外部排序——…

涂色问题 乘法原理(2024CCPC 山东省赛 C)

//*下午打得脑子连着眼睛一起疼 很多很基础的题目都没有做出来,规律题也找得很慢。比如下面这题,一定要多做,下次看到就直接写。 原题链接:https://codeforces.com/group/w6iGs8kreW/contest/555584/problem/C C. Colorful Segm…

LabVIEW光偏振态检测系统

开发一套LabVIEW的高精度光偏振态检测系统,采用机械转动法结合光电探测器和高性能数据采集硬件,能快速、准确地测量光的偏振状态。该系统广泛应用于物理研究、激光技术和光学工业中。 系统组成 该光偏振态检测系统主要由以下硬件和软件模块构成&#xf…

无人机+无人车+机器狗+无人船:大规模组网系统技术详解

无人机、无人车、机器狗和无人船的大规模组网系统技术,是实现海陆空全空间无人设备协同作业的关键。这种组网系统技术通过集成先进的通信、控制、感知和决策技术,使得不同类型的无人平台能够高效、准确地完成各种复杂任务。以下是对该技术的详细解析&…

SysML案例-呼吸机

DDD领域驱动设计批评文集>> 《软件方法》强化自测题集>> 《软件方法》各章合集>> 图片示例摘自intercax.com,作者是Intercax公司总裁Dirk Zwemer博士。

【项目安全设计】软件系统安全设计规范和标准(doc原件)

1.1安全建设原则 1.2 安全管理体系 1.3 安全管理规范 1.4 数据安全保障措施 1.4.1 数据库安全保障 1.4.2 操作系统安全保障 1.4.3 病毒防治 1.5安全保障措施 1.5.1实名认证保障 1.5.2 接口安全保障 1.5.3 加密传输保障 1.5.4终端安全保障 资料获取:私信或者进主页。…

将列表中的各字符串sn连接成为一个字符串s使用;将各sn间隔开os.pathsep.join()

【小白从小学Python、C、Java】 【考研初试复试毕业设计】 【Python基础AI数据分析】 将列表中的各字符串sn 连接成为一个字符串s 使用;将各sn间隔开 os.pathsep.join() [太阳]选择题 下列说法中正确的是? import os paths ["/a", "/b/c", "/d&q…

Android开发修改为原生主题(在Android Studio开发环境下)

结构如下图: 修改方法:在Android模式目录下,将res下的values文下的themes.xml文件中的 : parent"Theme.Material3.DayNight.NoActionBar" 修改为: parent"Theme.MaterialComponents.DayNight.Bridge&…

Meta 推出Movie Gen

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

ChatGPT 更新 Canvas 深度测评:论文写作这样用它!

我是娜姐 迪娜学姐 ,一个SCI医学期刊编辑,探索用AI工具提效论文写作和发表。 ChatGPT又又更新了:基于ChatGPT 4o模型的Canvas 写作和代码功能。目前,仅针对Plus和Team用户。是一个独立的模块,如下所示: 官方…

【Python】simplejson:Python 中的 JSON 编解码利器

simplejson 是一个高效且功能丰富的 Python JSON 编码和解码库。它能够快速地将 Python 数据结构转换为 JSON 格式(序列化),或将 JSON 格式的字符串转换为 Python 对象(反序列化)。相比标准库中的 json 模块&#xff0…

数据结构实验二 顺序表的应用

数据结构实验二 顺序表的应用 一、实验目的 1、掌握建立顺序表的基本方法。 2、掌握顺序表的插入、删除算法的思想和实现,并能灵活运用 二、实验内容 用顺序表实现病历信息的管理与查询功能。具体要求如下: 1.利用教材中定义顺序表类型存储病人病历信息(病历号…

直立行走机器人技术概述

直立行走机器人技术作为现代机器人领域的重要分支,结合了机械工程、计算机科学、人工智能、传感技术和动态控制等领域的最新研究成果。随着技术的不断发展,直立行走机器人在救灾、医疗、家庭辅助等领域开始发挥重要作用。本文旨在对直立行走机器人的相关…

Java 注释新手教程一口气讲完!ヾ(≧▽≦*)o

Java 注释 Java面向对象设计 - Java注释 什么是注释? Java中的注释允许我们将元数据与程序元素相关联。 程序元素可以是包,类,接口,类的字段,局部变量,方法,方法的参数,枚举&…

【STM32开发之寄存器版】(五)-窗口看门狗WWDG

一、前言 窗口看门狗简介: 窗口看门狗通常被用来监测,由外部干扰或不可预见的逻辑条件造成的应用程序背离正常的运行序列而产生的软件故障。除非递减计数器的值在T6位变成0前被刷新,看门狗电路在达到预置的时间周期时,会产生一个M…

C语言 | Leetcode C语言题解之第459题重复的子字符串

题目&#xff1a; 题解&#xff1a; bool kmp(char* query, char* pattern) {int n strlen(query);int m strlen(pattern);int fail[m];memset(fail, -1, sizeof(fail));for (int i 1; i < m; i) {int j fail[i - 1];while (j ! -1 && pattern[j 1] ! pattern…

Pikachu-PHP反序列化

从后端代码可以看出&#xff0c;拿到序列化后的字符串&#xff0c;直接做反序列化&#xff1b;并且在前端做了展示&#xff1b; 如果虚拟化后的字符串&#xff0c;包含alert 内容&#xff0c;反序列化后&#xff0c;就会弹出窗口 O:1:"S":1:{s:4:"test";s…

佑航科技Pre-A+轮融资成功:加速车载超声波芯片研发与量产

近日,超声波芯片领域的领先企业珠海佑航科技有限公司(简称“佑航科技”)宣布成功完成数千万元的Pre-A+轮战略融资。本轮融资由上市公司思瑞浦微电子旗下的芯阳基金进行战略投资,标志着佑航科技在车载超声波芯片及传感器领域的研发与量产能力迈上了新台阶。此次融资不仅为佑…

《Linux从小白到高手》理论篇:深入理解Linux的网络管理

今天继续宅家&#xff0c;闲来无事接着写。本篇详细深入介绍Linux的网络管理。 如你所知&#xff0c;在Linux中一切皆文件。网卡在 Linux 操作系统中用 ethX,是由 0 开始的正整数&#xff0c;比如 eth0、eth1… ethX。而普通猫和ADSL 的接口是 pppX&#xff0c;比如 ppp0 等。 …