回归树练习,泰坦尼克号幸存者的预测
数据集下载地址
https://download.csdn.net/download/AnalogElectronic/89846327
我们来看看train.csv文件,它包含了891个样本,每个样本代表一个乘客。这些样本的数据包括乘客的年龄(Age)、船票等级(Pclass)、性别(Sex)、登船港口(Embarked)、票价(Fare)等基本信息,以及最重要的生存状态(Survived)。这些特征提供了对乘客生存可能性的洞察,比如男性与女性的生存率差异、船票等级与生存机会的关系等。
##回归树练习,泰坦尼克号幸存者的预测
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
data = pd.read_csv(r"I:\hadoop note\titanic_train.csv",index_col= 0)
data.head()
#删除缺失值过多的列,和观察判断来说和预测的y没有关系的列
data.drop(["Cabin","Name","Ticket"],inplace=True,axis=1)
#处理缺失值,对缺失值较多的列进行填补,有一些特征只确实一两个值,可以采取直接删除记录的方法
data["Age"] = data["Age"].fillna(data["Age"].mean())
data = data.dropna()
#将分类变量转换为数值型变量
#将二分类变量转换为数值型变量
#astype能够将一个pandas对象转换为某种类型,和apply(int(x))不同,astype可以将文本类转换为数字,用这个方式可以很便捷地将二分类特征转换为0~1
data["Sex"] = (data["Sex"]== "male").astype("int")
#将三分类变量转换为数值型变量
labels = data["Embarked"].unique().tolist()
data["Embarked"] = data["Embarked"].apply(lambda x: labels.index(x))
#查看处理后的数据集
data.head()
##提取X和Y,拆分训练集和测试集
X = data.iloc[:,data.columns != "Survived"]
y = data.iloc[:,data.columns == "Survived"]
from sklearn.model_selection import train_test_split
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X,y,test_size=0.3)
#修正测试集和训练集的索引
for i in [Xtrain, Xtest, Ytrain, Ytest]:
i.index = range(i.shape[0])
#查看分好的训练集和测试集
Xtrain.head()
clf = DecisionTreeClassifier(random_state=25)
clf = clf.fit(Xtrain, Ytrain)
score_ = clf.score(Xtest, Ytest)
score_
##循环获取适合的max_depth
tr = []
te = []
for i in range(10):
clf = DecisionTreeClassifier(random_state=25,max_depth=i+1 ,criterion="entropy" )
clf = clf.fit(Xtrain, Ytrain)
score_tr = clf.score(Xtrain,Ytrain)
score_te = cross_val_score(clf,X,y,cv=10).mean()
tr.append(score_tr)
te.append(score_te)
print(max(te))
plt.plot(range(1,11),tr,color="red",label="train")
plt.plot(range(1,11),te,color="blue",label="test")
plt.xticks(range(1,11))
plt.legend()
plt.show()
0.8177860061287026
##交叉验证和网格搜索
import numpy as np
gini_thresholds = np.linspace(0,0.5,20)
parameters = {'splitter':('best','random'),
'criterion':("gini","entropy"),
"max_depth":[*range(1,10)],
'min_samples_leaf':[*range(1,50,5)],
'min_impurity_decrease':[*np.linspace(0,0.5,20)]}
clf = DecisionTreeClassifier(random_state=25)
GS = GridSearchCV(clf, parameters, cv=10)
GS.fit(Xtrain,Ytrain)
GS.best_params_
GS.best_score_
0.819969278033794