目录
一 多肽定义
1. 多肽的构成条件
1 例一
2 例二
2. 虚函数
3. 虚函数重写的两个意外
1 协变
2 析构函数的重写
二 关键字override 和 final
1. final
2.override
三 三重对比
1. 练习
四 多肽的原理
1. 多肽调用和普通调用
2.虚函数表
3. 分析
4. 原理
五 抽象类
1. 概念和实现
2. 接口继承和实现继承
六 单继承和多继承关系的虚函数表
1. 单继承中的虚函数表
2. 多继承中的虚函数表
3. 菱形继承、菱形虚拟继承
一 多肽定义
多态的概念:通俗来说,就是多种形态,具体点就是去完成某个行为,当不同的对象去完成时会 产生出不同的状态。
1. 多肽的构成条件
多态是在不同继承关系的类对象,去调用同一函数,产生了不同的行为。比如Student继承了 Person。Person对象买票全价,Student对象买票半价
构成多态条件
1. 必须通过基类的指针或者引用调用虚函数
2. 被调用的函数必须是虚函数,且派生类必须对基类的虚函数进行重写-->父子类中两个虚函数,三同(函数名、参数、返回)
1 例一
using namespace std;
#include<iostream>
class Person {
public:
//void BuyTicket() { cout << "买票-全价" << endl; }
virtual void BuyTicket() { cout << "买票-全价" << endl; }
};
class Student : public Person {
public:
//void BuyTicket() { cout << "买票-半价" << endl; }
virtual void BuyTicket() { cout << "买票-半价" << endl; }
};
// 多态
// 条件1:虚函数的重写 -> 父子类中两个虚函数,三同(函数名、参数、返回)
// 条件2:父类指针或引用去调用虚函数
void Func(Person& p)
{
p.BuyTicket();
}
int main()
{
Person ps;
Student st;
Func(ps);
Func(st);
return 0;
}
/*注意:在重写基类虚函数时,派生类的虚函数在不加virtual关键字时,虽然也可以构成重写(因 为继承后基类的虚函数被继承下来了在派生类依旧保持虚函数属性),但是该种写法不是很规范,不建议 这样使用*/
2 例二
class A
{
public:
virtual void f()
{
cout << "A::f()" << endl;
}
};
class B : public A
{
private:
virtual void f()
{
cout << "B::f()" << endl;
}
};
int main()
{
A* a = new A;
a->f();
A* pa = (A*)new B;
pa->f();
A* pa1 = new B;
pa1->f();
return 0;
}
2. 虚函数
虚函数:即被virtual修饰的类成员函数称为虚函数。
static和virtual是不能同时使用的
virtual关键字只在声明时加上,在类外实现时不能加
友元函数不是成员函数, 不能成为虚函数
虚函数的重写(覆盖):派生类中有一个跟基类完全相同的虚函数(即派生类虚函数与基类虚函数的返回值类型、函数名字、参数列表完全相同),称子类的虚函数重写了基类的虚函数。
3. 虚函数重写的两个意外
1 协变
基类与派生类虚函数返回值类型不同
派生类重写基类虚函数时,与基类虚函数返回值类型不同。即基类虚函数返回基类对象的指 针或者引用,派生类虚函数返回派生类对象的指针或者引用时,称为协变
协变,虚函数返回值可以不同,要求必须是父子类关系的指针或者引用
class A {};
class B : public A{};
class Person {
public:
virtual A* f() {
cout << "A::f()" << endl;
return new A;
}
};
class Student : public Person {
public:
virtual B* f() {
cout << "B::f()" << endl;
return new B;
}
};
int main()
{
Person* p = new Student;
p->f();
return 0;
}
2 析构函数的重写
基类与派生类析构函数的名字不同
如果基类的析构函数为虚函数,此时派生类析构函数只要定义,无论是否加virtual关键字, 都与基类的析构函数构成重写,虽然基类与派生类析构函数名字不同。虽然函数名不相同, 看起来违背了重写的规则,其实不然,这里可以理解为编译器对析构函数的名称做了特殊处 理,编译后析构函数的名称统一处理成destructor。
class Person {
public:
virtual ~Person() { cout << "~Person()" << endl; }
};
class Student : public Person {
public:
virtual ~Student() { cout << "~Student()" << endl; }
};
//只有派生类Student的析构函数重写了Person的析构函数
//下面的delete对象调用析构函数,才能构成多态,才能保证p1和p2指向的对象正确的调用析构函数。
int main()
{
Person* p1 = new Person;
Person* p2 = new Student;
delete p1;
delete p2;
return 0;
}
二 关键字override 和 final
从上面可以看出,C++对函数重写的要求比较严格,但是有些情况下由于疏忽,可能会导致函数 名字母次序写反而无法构成重载,而这种错误在编译期间是不会报出的,只有在程序运行时没有 得到预期结果才来debug会得不偿失,因此:C++11提供了override和final两个关键字,可以帮 助用户检测是否重写。
1. final
修饰虚函数,表示该虚函数不能再被重写
还可以让父类构造函数私有化 派生类实例化不出对象
2.override
检查派生类虚函数是否重写了基类某个虚函数,如果没有重写编译报错
三 三重对比
重载、覆盖(重写)、隐藏(重定义)的对比
1. 练习
以下程序输出结果是什么()
func是虚函数重写 基类是声明 派生类是实现 选B
四 多肽的原理
1. 多肽调用和普通调用
class Person {
public:
virtual ~Person()
{
cout << "~Person()" << endl;
}
virtual void BuyTicket() { cout << "买票-全价" << endl; }
};
class Student : public Person {
public:
~Student()
{
cout << "~Student()" << endl;
}
void BuyTicket() { cout << "买票-半价" << endl; }
};
class Children : public Person
{
public:
void BuyTicket() { cout << "买票-免费" << endl; }
};
int main()
{
//Person p;
//Student s;
Person* p1 = new Person;
Person* p2 = new Student;
Person* p3 = new Children;
// 多态调用
p1->BuyTicket();
p2->BuyTicket();
p3->BuyTicket();
// 普通调用
Student s;
s.BuyTicket();
s.Person::BuyTicket();
return 0;
}
2. 虚函数表
// sizeof(Base)是多少?
class Base
{
public:
virtual void Func1()
{
cout << "Func1()" << endl;
}
private:
int _b = 1;
};
int main()
{
cout << sizeof(Base) << endl;
return 0;
}
通过观察测试我们发现b对象是8bytes,除了_b成员,还多一个__vfptr放在对象的前面(注意有些 平台可能会放到对象的最后面,这个跟平台有关),对象中的这个指针我们叫做虚函数表指针(v代 表virtual,f代表function)。一个含有虚函数的类中都至少都有一个虚函数表指针,因为虚函数 的地址要被放到虚函数表中,虚函数表也简称虚表,。那么派生类中这个表放了些什么呢?我们 接着往下分析
3. 分析
// 针对上面的代码我们做出以下改造
// 1.我们增加一个派生类Derive去继承Base
// 2.Derive中重写Func1
// 3.Base再增加一个虚函数Func2和一个普通函数Func3
class Base
{
public:
virtual void Func1()
{
cout << "Base::Func1()" << endl;
}
virtual void Func2()
{
cout << "Base::Func2()" << endl;
}
void Func3()
{
cout << "Base::Func3()" << endl;
}
private:
int _b = 1;
char _ch = 'a';
};
class Derive : public Base
{
public:
virtual void Func1()
{
cout << "Derive::Func1()" << endl;
}
private:
int _d = 2;
};
void f(Base* ptr)
{
ptr->Func1();
}
// vitual function table
int main()
{
Base bb;
Derive dd;
f(&bb);
f(&dd);
return 0;
}
通过观察和测试,我们发现了以下几点问题:
虚表是在编译期间生成的
1. 派生类对象d中也有一个虚表指针,d对象由两部分构成,一部分是父类继承下来的成员,另一部分是自己的成员。
2. 基类b对象和派生类d对象虚表是不一样的,这里我们发现Func1完成了重写,所以d的虚表中存的是重写的Derive::Func1,所以虚函数的重写也叫作覆盖,覆盖就是指虚表中虚函数的覆盖。重写是语法的叫法,覆盖是原理层的叫法。
3. 另外Func2继承下来后是虚函数,所以放进了虚表,Func3也继承下来了,但是不是虚函数,所以不会放进虚表。
4. 虚函数表本质是一个存虚函数指针的指针数组,一般情况这个数组最后面放了一个nullptr。
5. 总结一下派生类的虚表生成:a.先将基类中的虚表内容拷贝一份到派生类虚表中 b.如果派生类重写了基类中某个虚函数,用派生类自己的虚函数覆盖虚表中基类的虚函数 c.派生类自己新增加的虚函数按其在派生类中的声明次序增加到派生类虚表的最后。
6. 这里还有一个很容易混淆的问题:虚函数存在哪的?虚表存在哪的?
答:虚函数存在虚表,虚表存在对象中。
注意上面的回答的错的。但是很多都是这样深以为然的。
正确答案:
虚表存的是虚函数指针,不是虚函数,虚函数和普通函数一样的,都是存在代码段的,只是他的指针又存到了虚表中。另外对象中存的不是虚表,存的是虚表指针。
4. 原理
class Person {
public:
virtual void BuyTicket() { cout << "买票-全价" << endl; }
};
class Student : public Person {
public:
virtual void BuyTicket() { cout << "买票-半价" << endl; }
};
void Func(Person& p)
{
p.BuyTicket();
}
int main()
{
Person Mike;
Func(Mike);
Student Johnson;
Func(Johnson);
return 0;
}
1. 观察下图的红色箭头我们看到,p是指向mike对象时,p->BuyTicket在mike的虚表中找到虚函数是Person::BuyTicket。
2. 观察下图的蓝色箭头我们看到,p是指向johnson对象时,p->BuyTicket在johson的虚表中找到虚函数是Student::BuyTicket。
3. 这样就实现出了不同对象去完成同一行为时,展现出不同的形态。
4. 反过来思考我们要达到多态,有两个条件,一个是虚函数覆盖,一个是对象的指针或引用调用虚函数。反思一下为什么?
5. 满足多态以后的函数调用,不是在编译时确定的,是运行起来以后到对象的中取找的。不满足多态的函数(普通函数)调用时编译时确认好的。
五 抽象类
1. 概念和实现
在虚函数的后面写上 =0 ,则这个函数为纯虚函数。包含纯虚函数的类叫做抽象类(也叫接口 类),抽象类不能实例化出对象。派生类继承后也不能实例化出对象,只有重写纯虚函数,才能实例化出对象。纯虚函数规范了派生类必须重写,另外纯虚函数更体现出了接口继承。
纯虚函数可以有函数体
class Car
{
public:
virtual void Drive() = 0;
};
class Benz :public Car
{
public:
virtual void Drive()
{
cout << "Benz-舒适" << endl;
}
};
class BMW :public Car
{
public:
virtual void Drive()
{
cout << "BMW-操控" << endl;
}
};
void Test()
{
Car* pBenz = new Benz;
pBenz->Drive();
Car* pBMW = new BMW;
pBMW->Drive();
}
int main()
{
Test();
return 0;
}
2. 接口继承和实现继承
普通函数的继承是一种实现继承,派生类继承了基类函数,可以使用函数,继承的是函数的实 现。虚函数的继承是一种接口继承,派生类继承的是基类虚函数的接口,目的是为了重写,达成 多态,继承的是接口。所以如果不实现多态,不要把函数定义成虚函数。
六 单继承和多继承关系的虚函数表
1. 单继承中的虚函数表
class Base {
public:
virtual void func1() { cout << "Base::func1" << endl; }
virtual void func2() { cout << "Base::func2" << endl; }
private:
int a;
};
class Derive :public Base {
public:
virtual void func1() { cout << "Derive::func1" << endl; }
virtual void func3() { cout << "Derive::func3" << endl; }
virtual void func4() { cout << "Derive::func4" << endl; }
private:
int b;
};
2. 多继承中的虚函数表
class Base1 {
public:
virtual void func1() { cout << "Base1::func1" << endl; }
virtual void func2() { cout << "Base1::func2" << endl; }
private:
int b1;
};
class Base2 {
public:
virtual void func1() { cout << "Base2::func1" << endl; }
virtual void func2() { cout << "Base2::func2" << endl; }
private:
int b2;
};
class Derive : public Base1, public Base2 {
public:
virtual void func1() { cout << "Derive::func1" << endl; }
virtual void func3() { cout << "Derive::func3" << endl; }
private:
int d1;
};
int main()
{
Derive d;
cout << sizeof(d) << endl;
return 0;
}
3. 菱形继承、菱形虚拟继承
实际中我们不建议设计出菱形继承及菱形虚拟继承,一方面太复杂容易出问题,另一方面这样的 模型,访问基类成员有一定得性能损耗。所以菱形继承、菱形虚拟继承我们的虚表我们就不看 了,一般我们也不需要研究清楚,因为实际中很少用。
class A
{
public:
virtual void func1()
{}
public:
int _a;
};
class B : virtual public A
{
public:
virtual void func1()
{}
public:
int _b;
};
class C : virtual public A
{
public:
virtual void func1()
{}
public:
int _c;
};
class D : public B,public C
{
// B C 都完成了重写 那D中A虚表中覆盖谁的? 存在问题--> D中也完成重写 解决争议
public:
virtual void func1()
{}
public:
int _d;
};
int main()
{
D d;
cout << sizeof(d) << endl;
return 0;
}
总结:
大家一定要先看看之前的继承章节, 才能更好的过度到多肽. 继续加油!