OpenCV-图像拼接

news2024/11/28 7:26:46

文章目录

  • 一、基本原理
  • 二、步骤
  • 三、代码实现
    • 1.定义函数
    • 2.读取图像
    • 3.图像配准
      • (1).特征点检测
      • (2).特征匹配
    • 4.透视变换
    • 5.图像拼接
  • 四、图像拼接的注意事项

图像拼接是一种将多张有重叠部分的图像合并成一张无缝的全景图或高分辨率图像的技术。它在许多领域都有广泛的应用,如摄影、虚拟现实、医学成像等。

一、基本原理

图像拼接的基本原理是通过找到不同图像之间的相似性或重叠区域,利用这些区域将图像无缝地融合在一起,形成一幅更大的图像。这个过程通常包括图像预处理、图像配准、建立变换模型、统一坐标变换以及融合重构等步骤。

二、步骤

  • 图像预处理
    • 去噪:去除图像中的噪声,提高图像质量。
    • 边缘提取:提取图像的边缘信息,有助于后续的配准和融合。
    • 直方图处理:调整图像的亮度、对比度等,使不同图像在视觉上更加一致。
  • 图像配准
    • 特征点检测:使用算法(如SIFT、SURF、ORB等)检测图像中的特征点。
    • 特征匹配:根据特征点的描述符进行匹配,找到不同图像之间的对应点。
    • 变换关系计算:根据匹配点计算图像之间的变换关系,如单应性矩阵或仿射变换矩阵。
  • 建立变换模型
    • 根据匹配点之间的对应关系,建立数学模型,描述图像之间的变换关系。
  • 统一坐标变换
    • 将待拼接图像根据变换模型转换到同一坐标系中,使图像在空间位置上对齐。
  • 图像融合
    • 在图像的重叠区域进行融合处理,消除拼接痕迹,使拼接后的图像看起来自然无缝。
    • 融合方法包括多带混合、泊松图像编辑等。

三、代码实现

在OpenCV中,图像拼接通常涉及到特征检测、特征匹配、计算变换矩阵(如单应性矩阵或仿射变换矩阵)以及使用这些矩阵将图像变换到统一坐标系下,最后进行图像拼接的过程。

1.定义函数

import cv2
import numpy as np
import sys
def cv_show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey(0)


def detectAndDescribe(image):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    descriptor = cv2.SIFT_create()
    (kps, des) = descriptor.detectAndCompute(gray, None)
    kps_float = np.float32([kp.pt for kp in kps])
    return (kps, kps_float, des)
  • 首先我们定义了两个函数,cv_show用来展示图像,detectAndDescribe使用了 OpenCV 的
    SIFT(尺度不变特征变换)算法来检测图像中的关键点和计算这些关键点的描述符。

2.读取图像

"""读取图片"""
imageA = cv2.imread('xiangjiA.jpg')
cv_show('A', imageA)
imageB = cv2.imread('xiangjiB.jpg')
# imageB = cv2.resize(imageB,(662, 604))
cv_show('B', imageB)
  • 使用cv2.imread()读取图片。
  • 使用cv_show()函数显示图片。
    在这里插入图片描述

3.图像配准

(1).特征点检测

"""计算图片特征点及描述符"""
(kpsA, kps_floatA, desA) = detectAndDescribe(imageA)
(kpsB, kps_floatB, desB) = detectAndDescribe(imageB)
  • 调用定义的函数detectAndDescribe
  • 将图片转换为灰度图。
  • 使用SIFT算法(cv2.SIFT_create())检测特征点和计算描述符。

(2).特征匹配

"""建立暴力匹配器BFMatcher,在匹配大型训练集合时使用FlannBaesdMatcher速度快"""
matcher = cv2.BFMatcher()
rawMatches = matcher.knnMatch(desB, desA, 2)
good = []
matches = []
for m in rawMatches:
    if len(m) == 2 and m[0].distance < 0.65 * m[1].distance:
        goodB.append(m)
        matchesB.append((m[0].trainIdx, m[0].queryIdx))
rawMatchesA = matcher.knnMatch(desA, desB, 2)
print(len(good))
print(matches)

vis = cv2.drawMatchesKnn(imageB, kpsB, imageA, kpsA, good, None, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv_show('Keypoint Maxtchs', vis)
  • 使用BFMatcher(暴力匹配器)进行特征点匹配,并应用Lowe’s ratio test来筛选好的匹配点。
  • 分别计算从imageB到imageA的匹配点。

在这里插入图片描述

4.透视变换

"""透视变换"""
if len(matches) > 4:
    ptsA = np.float32([kps_floatA[i] for (i, _) in matches])  # matches是通过阈值筛选之后的特征点对象
    ptsB = np.float32([kps_floatB[i] for (_, i) in matches])  # kps_floatA是图片A中的全部特征点坐标
    (H, mask) = cv2.findHomography(ptsB, ptsA, cv2.RANSAC, 10)

else:
    print('图片未找到4个以上的匹配点')
    sys.exit()
result = cv2.warpPerspective(imageB, H, (imageB.shape[1] + imageA.shape[1], imageB.shape[0]))
  • 如果匹配点数量超过4个,则使用cv2.findHomography()计算单应性矩阵。
  • 使用单应性矩阵和cv2.warpPerspective()进行透视变换。

5.图像拼接

cv_show('result', result)
result[0:imageA.shape[0], 0:imageA.shape[1]] = imageA
cv_show('resultB', result)
  • 将变换后的图片与另一张图片合并,并显示结果。这里我们是从图像左上角位置开始合并。
    在这里插入图片描述
    在这里插入图片描述
    以上是一个基本的图像拼接流程。在实际应用中,可能需要调整特征检测器的参数、匹配阈值以及RANSAC的阈值,以获得最佳结果。此外,对于复杂场景或大规模数据集,可能还需要考虑并行处理和优化内存使用等问题。

四、图像拼接的注意事项

  • 确保图像有重叠部分:图像拼接依赖于图像之间的重叠区域,因此确保待拼接图像有足够的重叠是非常重要的。
  • 选择合适的拼接方法:不同的拼接方法适用于不同的场景和需求,选择合适的拼接方法可以获得更好的效果。
  • 调整参数:在拼接过程中,可能需要调整一些参数(如特征点检测器的阈值、匹配阈值等),以获得最佳的拼接效果。
  • 检查拼接效果:拼接完成后,仔细检查拼接效果,确保没有明显的拼接痕迹或失真现象。

通过以上步骤和注意事项,可以实现高质量的图像拼接,满足各种应用需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2186810.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

蓝桥杯【物联网】零基础到国奖之路:十七. 扩展模块之单路ADC和NE555

蓝桥杯【物联网】零基础到国奖之路:十七. 扩展模块之单路ADC和NE555 第一节 硬件解读第二节 CubeMx配置第三节 代码1&#xff0c;脉冲部分代码2&#xff0c;ADC部分代码![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/57531a4ee76d46daa227ae0a52993191.png) 第一节 …

基于工业物联网的能源监控系统:边缘数据处理的应用

论文标题&#xff1a;《Industrial IoT-Based Energy Monitoring System: Using Data Processing at Edge》 作者信息&#xff1a; Akseer Ali MiraniAnshul AwasthiNiall O’MahonyJoseph Walsh 他们均来自爱尔兰的芒斯特技术大学IMaR研究中心&#xff0c;以及位于利默里克的…

秋招校招北森笔试测评北森笔测评常见图推题目解答

北森笔试测评常见题目解析第二弹&#xff1a; P1&#xff1a;每一行均出现圆&#xff0c;米&#xff0c;口加上内部的菱形和小圆形&#xff0c;行测上称之为遍历。 P2&#xff1a;题干也给提示了&#xff0c;肯定不选9&#xff0c;考虑封闭部分&#xff0c;选11. P3&#xf…

面试速通宝典——7

150. 数据库连接池的作用 数据库连接池的作用包括以下几个方面&#xff1a; 资源重用&#xff1a;连接池允许多个客户端共享有限的数据库连接&#xff0c;减少频繁创建和销毁连接的开销&#xff0c;从而提高资源的利用率。 统一的连接管理&#xff1a;连接池集中管理数据库连…

访问webapps下边的内容不能访问解决办法

1、看是否是带有中文路径&#xff0c;中文路径访问不了 2、是否在访问的时候没有带8080端口 如图&#xff0c;带有8080就可以访问了 原因&#xff1a; 当你尝试通过 http://localhost:8080/hello/hello.html 访问网页时&#xff0c;端口号 “8080” 指定了该请求将发送到本地主…

STM32-MPU6050+DAM库源码(江协笔记)

目录 1、MPU6050简介 2、MPU6050参数 3、MPU6050硬件电路 4、MPU6050结构 5、MPU6000和MPU6050的区别 6、MPU6050应用场景 7、MPU6050电气参数 8、MPU6050时钟源选择 9、MPU6050中断源 10、MPU6050的I2C读写操作 11、DMP库移植 1、MPU6050简介 10轴传感器&#xff1…

使用CSS实现酷炫加载

使用CSS实现酷炫加载 效果展示 整体页面布局 <div class"container"></div>使用JavaScript添加loading加载动画的元素 document.addEventListener("DOMContentLoaded", () > {let container document.querySelector(".container&q…

Unity初识+面板介绍

Unity版本使用 小版本号高&#xff0c;出现bug可能性更小&#xff1b;一台电脑可以安装多个版本的Unity&#xff0c;但是需要安装在不同路径&#xff1b;安装Unity时不能有中文路径&#xff1b;Unity项目路径也不要有中文。 Scene面板 相当于拍电影的片场&#xff0c;Unity程…

前缀和+思维,CF 1984C2 - Magnitude (Hard Version)

目录 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 二、解题报告 1、思路分析 2、复杂度 3、代码详解 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 1984C2 - Magnitude (Hard Version) 二、解题报告 1、思路分析 C1 是只要…

Docker巩固十七问

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 1. 如何批量清理临时镜像文件&#xff1f; 所谓的“临时镜像”或“虚悬镜像”&#xff08;dangling images&#xff09;是指那些…

动态规划算法专题(二):路径问题

1. 不同路径 . - 力扣&#xff08;LeetCode&#xff09; 1.1 算法原理 状态表示dp[i][j]&#xff1a;走到(i,j)位置&#xff0c;一共有多少种方法&#xff08;以(i,j)位置为结尾&#xff09;状态转移方程&#xff1a;dp[i][j]dp[i-1][j]dp[i][j-1];初始化&#xff1a;dp[0][1…

SSM超市进销存管理系统源码

主要功能说明&#xff1a; 管理员角色包含以下功能&#xff1a;管理员登录、进货管理、商品信息、类别管理、库存管理、销售管理、 客户信息管理、供应商管理、员工管理、修改管理员个人信息等功能。 员工角色包含以下功能&#xff1a;员工登录、进货信息查看、退货信息管理…

大华智慧园区综合管理平台系统存在多处漏洞

漏洞描述 大华智慧园区综合管理平台是一个集智能化、信息化、网络化、安全化为一体的智慧园区管理平台&#xff0c;旨在为园区提供一站式解决方案&#xff0c;包括安防、能源管理、环境监测、人员管理、停车管理等多个方面。 FOFA app"dahua-智慧园区综合管理平台"…

【Linux庖丁解牛】—Linux基本指令(中)!

&#x1f308;个人主页&#xff1a;秋风起&#xff0c;再归来~&#x1f525;系列专栏&#xff1a; Linux庖丁解牛 &#x1f516;克心守己&#xff0c;律己则安 目录 1、rmdir与rm指令 2、man指令 3、cp指令 4、mv指令 5、cat与tac指令 6、重定向 7、more指令 8、…

【AIGC】ChatGPT账号的常见封号原因与解封方法

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;ChatGPT封号背景与常见原因ChatGPT封号行动背景ChatGPT常见的封号原因 &#x1f4af;OpenAl封号规则总结&#x1f4af;使用ChatGPT时防止封禁需要特别注意的细节和建议&a…

2025年数字人直播还能做吗?数字人直播的套路骗局须知网

2025年数字人直播还能做吗&#xff1f;数字人直播的套路骗局须知网 数字人直播是利用先进的数字技术和算法&#xff0c;创建出了一个具有人类形象的虚拟数字人&#xff0c;那通过模仿人类的行为、语言和情感进行事实的互动和内容的展示。 这种直播方式突破了传统的限制&#…

性能测试笔记1

为什么要进行性能测试&#xff1f;&#xff08;在真实项目商用时&#xff0c;需要大量的用户进行使用&#xff0c;因此需要模拟大量用户的使用场景 &#xff09; 1、业务需求 电商双 11 活动 / 微信春晚抢红包 /12306 春运订票 当前服务器配置是否支持 20000 人同时使用 技术…

深度学习中的结构化概率模型 - 使用图来描述模型结构篇

序言 在深度学习的探索之路上&#xff0c;结构化概率模型以其独特的视角和强大的表达能力&#xff0c;成为了研究复杂数据关系的重要工具。这一模型的核心在于其巧妙地利用图来描述模型结构&#xff0c;将随机变量间的复杂交互关系可视化、结构化。图的引入&#xff0c;不仅为…

【笔记】原子结构的近代理论

近代原子结构理论的建立是从氢原子光谱得到启示的。 一、氢原子光谱与波尔理论 1.氢原子光谱 在装有两个电极的真空玻璃管内通入极少量高纯氢气&#xff0c;通高压电使之放电&#xff0c;管中发出的光束通过分光棱镜&#xff0c;得到分立的谱线&#xff0c;称为线状光谱。 发…

系统安全 - Linux /Docker 安全模型及实践

文章目录 导图Linux安全Linux 安全模型用户层权限管理的细节多用户环境中的权限管理文件权限与目录权限 最小权限原则的应用Linux 系统中的认证、授权和审计机制认证机制授权机制审计机制 小结 内网安全Docker安全1. Docker 服务隔离机制Namespace 机制Capabilities 机制CGroup…