理解无监督学习、无监督图像分割

news2024/12/27 15:24:36

系列文章目录


文章目录

  • 系列文章目录
  • 一、无监督学习如何学习 能不能举一个非常具体的例子,带着运算过程的例子
      • 总结
  • 二、在图像分割中呢,具体怎样实现无监督
      • 示例:使用自编码器和k-means进行无监督图像分割
        • 1. **数据准备**
        • 2. **构建自编码器**
        • 3. **训练自编码器**
        • 4. **提取特征**
        • 5. **k-means聚类**
        • 6. **生成分割结果**
        • 7. **后处理**
      • 示例代码(伪代码)


一、无监督学习如何学习 能不能举一个非常具体的例子,带着运算过程的例子

当然可以!下面我们将通过一个具体的无监督学习示例,使用k-means聚类算法来说明无监督学习的过程,包括数据准备、算法步骤和计算过程。

在这里插入图片描述
在这里插入图片描述

总结

通过k-means聚类算法,我们成功地将数据点分成了两个聚类,尽管没有任何标签。这一过程展示了无监督学习如何通过数据本身的结构进行学习和分类。每一次迭代中,算法通过计算距离和更新质心来逐步优化聚类结果。

二、在图像分割中呢,具体怎样实现无监督

在图像分割中实现无监督学习可以通过多种方法。以下是一个具体的示例,使用自编码器(Autoencoder)和k-means聚类来进行无监督图像分割的过程。

示例:使用自编码器和k-means进行无监督图像分割

1. 数据准备

假设我们有一组图像数据集,例如医学图像或自然图像。我们将使用这些图像进行无监督分割。

2. 构建自编码器

自编码器是一种神经网络,旨在学习输入数据的压缩表示。它由两个部分组成:

  • 编码器:将输入图像压缩成低维表示(潜在空间)。
  • 解码器:将低维表示还原为原始图像。

网络结构示例

  • 输入层:图像(例如,256x256x3的RGB图像)
  • 编码层:多个卷积层,最后连接到一个全连接层,输出潜在表示(例如,64维向量)
  • 解码层:多个反卷积层,将潜在表示还原为原始图像尺寸
3. 训练自编码器

使用重构损失来训练自编码器:

Loss = 1 N ∑ i = 1 N ∥ x i − x ^ i ∥ 2 \text{Loss} = \frac{1}{N} \sum_{i=1}^{N} \| x_i - \hat{x}_i \|^2 Loss=N1i=1Nxix^i2

这里, x i x_i xi是真实图像, x ^ i \hat{x}_i x^i是重构图像, N N N是图像总数。

4. 提取特征

训练完成后,使用编码器部分提取图像的潜在表示。对于每个输入图像,获得一个64维的特征向量。

5. k-means聚类

对提取的特征进行k-means聚类:

  • 选择k值:根据图像内容选择聚类数,例如2(前景和背景)或更多。
  • 初始化质心:随机选择k个特征向量作为初始质心。
  • 分配步骤:计算每个特征向量到质心的距离,并将其分配到最近的质心。
  • 更新步骤:计算新的质心为每个聚类的特征向量均值。
6. 生成分割结果
  • 根据k-means的聚类结果,将每个图像的像素分配到对应的聚类,生成分割图。
7. 后处理
  • 可以应用形态学操作(如开运算、闭运算)来平滑分割结果,去除小噪声。

示例代码(伪代码)

以下是一个伪代码示例,展示如何实现上述步骤:

import numpy as np
from keras.models import Model
from keras.layers import Input, Conv2D, Flatten, Dense, Reshape, Conv2DTranspose
from sklearn.cluster import KMeans

# Step 1: Prepare your dataset (images)
images = load_images()  # Load your dataset

# Step 2: Build the autoencoder
input_img = Input(shape=(256, 256, 3))
x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
flat = Flatten()(x)
encoded = Dense(64, activation='relu')(flat)

# Decoder
x = Dense(64 * 256 * 256, activation='relu')(encoded)
x = Reshape((256, 256, 64))(x)
x = Conv2DTranspose(64, (3, 3), activation='relu', padding='same')(x)
decoded = Conv2DTranspose(3, (3, 3), activation='sigmoid', padding='same')(x)

autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adam', loss='mse')

# Step 3: Train the autoencoder
autoencoder.fit(images, images, epochs=50, batch_size=32)

# Step 4: Extract features
encoder = Model(input_img, encoded)
features = encoder.predict(images)

# Step 5: Perform k-means clustering
kmeans = KMeans(n_clusters=2)
kmeans.fit(features)
labels = kmeans.labels_

# Step 6: Generate segmentation masks
segmented_images = generate_masks(labels, images.shape)  # Convert labels to masks

# Step 7: Post-processing (optional)
segmented_images = post_process(segmented_images)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2186413.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小练--盲打学成在线

免责声明:本文仅做分享! 学成在线 (olin-yi.github.io) 目录 目录构造 基础公共样式 base.css index.html 版心居中 网页制作思路 CSS 实现思路 头部整体布局 logo 导航制作技巧(nav) 搜索区域(search&am…

Leetcode 2300. 咒语和药水的成功对数

1.题目基本信息 1.1.题目描述 给你两个正整数数组 spells 和 potions ,长度分别为 n 和 m ,其中 spells[i] 表示第 i 个咒语的能量强度,potions[j] 表示第 j 瓶药水的能量强度。 同时给你一个整数 success 。一个咒语和药水的能量强度 相乘…

进程的环境

进程环境 main 函数 当内核执行 C 程序时,在调用 main 函数之前先调用一个特殊的启动例程。可执行文件会将此启动例程指定为程序的起始地址 —— 这是由连接编辑器设置,而连接编辑器是由 C 编译器调用。启动例程从内核取得命令行参数和环境变量值&…

Nodejs多版本切换工具NVM

1 nvm介绍 NVM(Node Version Manager)是一个用于管理多个Node.js版本的工具,它允许用户在同一台计算机上安装和切换不同版本的Node.js。这对于开发者来说非常有用,因为不同的项目可能需要不同版本的Node.js环境。 NVM功能特性&a…

【Spring】Spring Boot项目创建和目录介绍

1 Spring Boot 介绍 Spring 让 Java 程序更加快速、简单和安全,Spring 对于速度、简单性和生产力的关注使其成为世界上最流行的 Java 框架 Spring 官方提供了很多开源的项目,覆盖范围从 Web 开发到大数据,Spring 发展到了今天,已…

使用Mac高频重复输入时别再傻傻的复制粘贴了,让快捷短语解放你的双手

你在使用Mac的时候,常用的句子、词语、代码都还在自己手动输入吗,当你需要高频的输入同样的内容,手动输入效率太低了,我发现一款实用的工具帮你解决这个问题,快捷短语-高频输入神器,更支持iCloud云备份。 快…

记录一个chatgpt接口站的明文密码泄露漏洞

前言 前段时间看到的一个chatgpt接口网站,注册过后,习惯性的F12看下请求包和响应包,于是就有了这篇文章。 漏洞 查看登录的一系列流量,除了前端界面相关的,一共有三个请求,分别是login,getle…

msvcr110.dll丢失怎么弄,详细介绍4种可靠解决方法

1. msvcr110.dll 简介 1.1 定义及作用 msvcr110.dll 是 Microsoft Visual C 2012 Redistributable Package 的一部分,它是一个动态链接库(Dynamic Link Library)文件,对于运行使用 Visual C 2012 编译的应用程序至关重要。这个库…

如何在 DAX 中计算多个周期的移动平均线

在 DAX 中计算移动聚合很容易。但是,计算一段时间内的移动平均值时会有一些陷阱。由于其中一些陷阱是定义问题,因此我们必须小心,不要选择错误的方法。让我们看看细节。欢迎来到雲闪世界。 添加图片注释,不超过 140 字&#xff08…

算法笔记(五)——分治

文章目录 算法笔记(五)——分治快排颜色分类排序数组数组中的第K个最大元素库存管理 III 归并排序数组交易逆序对的总数计算右侧小于当前元素的个数翻转对 算法笔记(五)——分治 分治算法字面上的解释是“分而治之”,就…

mindsearch run 本地服务

bing_browser.py ~/.conda/envs/mindsearch/lib/python3.10/site-packages/lagent/actions# vim bing_browser.py 修改提示词文件 MindSearch/mindsearch/agent/mindsearch_prompt.py # flake8: noqasearcher_system_prompt_cn """## 人物简介 你是一个可以…

易贝恩副总经理朱洪泽受邀为第四届中国项目经理大会演讲嘉宾

全国项目经理专业人士年度盛会 北京易贝恩项目管理科技有限公司副总经理朱洪泽女士受邀为PMO评论主办的全国项目经理专业人士年度盛会——2024第四届中国项目经理大会演讲嘉宾,演讲议题为“从手动到智能:项目管理系统助力项目经理提升执行效率”。大会将…

python中的copy方法

记录一下python中的浅拷贝copy和深拷贝deepcopy 例题如下: import copyls [1, 2, [3, 4], 5, 6]ls1 ls.copy()ls2 lsls3 copy.deepcopy(ls)ls[2][1] 0ls.pop(1)ls.append([7, 8])print(ls1) #--------慙1慖print(ls2) #--------慙2慖print(ls3) #------…

windows10或11家庭版实现远程桌面连接控制

远程协助是一种Windows工具,允许控制者使用鼠标和键盘远程控制接受者的计算机,从某种程度上讲,这也是Win10家庭版无法远程桌面的一个有效替代方案。 步骤1. 在使用Windows远程协助之前,您需要先更改某些设置,右键单击…

yolov11模型在bdd100k数据集上的应用【代码+数据集+python环境+训练/应用GUI系统】

yolov8/9/10/11模型在bdd100k数据集上的应用【代码数据集python环境训练/应用GUI系统】 yolov8/9/10/11模型在bdd100k数据集上的应用【代码数据集python环境训练/应用GUI系统】 yolov8/9/10/11模型在bdd100k数据集上的应用【代码数据集python环境训练/应用GUI系统】 bdd100k数据…

Vue3项目开发——新闻发布管理系统(九)(完结篇)

文章目录 十一、用户信息管理1、用户基本资料管理1.1 页面设计1.2 封装接口,更新信息2、更换头像2.1 静态结构2.2 选择图片预览2.3 上传头像3、重置密码3.1 页面设计3.2 封装接口,更新密码十二、项目打包十三、系统全部源码下载十一、用户信息管理 用户信息管理包括功能:基…

软件设计师——信息安全

📔个人主页📚:秋邱-CSDN博客☀️专属专栏✨:软考——软件设计师🏅往期回顾🏆:软件设计师——计算机网络🌟其他专栏🌟:C语言_秋邱 ​ 一、加密技术与认证技术…

Redis:初识Redis

Redis:初识Redis Redis 介绍分布式架构Redis特性安装Redis Redis 介绍 在官网中,是如下介绍Redis的: in-memory data store used by millions of developers as a cache, vector database, document database, streaming engine, and messag…

【解锁心灵枷锁】每天焦虑烦躁压抑?这7招助你重拾宁静与阳光!

在这个快节奏、高压力的时代,每个人心中或许都藏着一份不易察觉的焦虑与烦躁,它像一层无形的阴霾,悄悄笼罩着我们的生活,让人感到压抑与无力。但请相信,无论现状多么艰难,总有方法能驱散这些负面情绪&#…

大数据与人工智能:基础与应用的多维思考

大数据与人工智能:基础与应用的多维思考 前言一、时代定位与发展方向二、人工智能的本质与学科融合三、大数据和人工智能的构成要素与大众需求四、计算机系统结构与基础软件的重要性五、研究途径与领域知识的作用六、发展的态度与责任 前言 当下,大数据…