Scrapy 爬虫的大模型支持

news2024/12/23 20:05:07

使用 Scrapy 时,你可以轻松使用大型语言模型 (LLM) 来自动化或增强你的 Web 解析。

有多种使用 LLM 来帮助进行 Web 抓取的方法。在本指南中,我们将在每个页面上调用一个 LLM,从中抽取我们定义的一组属性,而无需编写任何选择器或训练任何模型。

 NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割

1、启动 Scrapy 项目

按照 Web 抓取教程的启动 Scrapy 项目页面上的说明启动 Scrapy 项目。

2、安装 LLM 依赖项

本指南将使用 LiteLLM 作为 LLM 的 API。

出于本指南的目的,我们将通过 Ollama 运行 Mistral 7B LLM,但 LiteLLM 几乎可以运行任何 LLM,正如你稍后将看到的那样。

首先安装 html2text、LiteLLM 和 Ollama:

pip install html2text litellm ollama

然后启动 Ollama 服务器:

ollama serve

打开第二个终端,安装 Mistral 7B:

ollama pull mistral

3、在你的爬虫程序中使用 LLM

现在你有一个包含简单爬虫程序和 LLM 的 Scrapy 项目可供使用,请在 tutorial/spiders/books_toscrape_com_llm.py 中使用以下代码创建第一个爬虫程序的替代方案:

import json
from json.decoder import JSONDecodeError
from logging import getLogger

import ollama
from html2text import HTML2Text
from litellm import acompletion
from scrapy import Spider

html_cleaner = HTML2Text()
logger = getLogger(__name__)


async def llm_parse(response, prompts):
    key_list = ", ".join(prompts)
    formatted_scheme = "\n".join(f"{k}: {v}" for k, v in prompts.items())
    markdown = html_cleaner.handle(response.text)
    llm_response = await acompletion(
        messages=[
            {
                "role": "user",
                "content": (
                    f"Return a JSON object with the following root keys: "
                    f"{key_list}\n"
                    f"\n"
                    f"Data to scrape:\n"
                    f"{formatted_scheme}\n"
                    f"\n"
                    f"Scrape it from the following Markdown text:\n"
                    f"\n"
                    f"{markdown}"
                ),
            },
        ],
        model="ollama/mistral",
    )
    data = llm_response["choices"][0]["message"]["content"]
    try:
        return json.loads(data)
    except JSONDecodeError:
        logger.error(f"LLM returned an invalid JSON for {response.url}: {data}")
        return {}


class BooksToScrapeComLLMSpider(Spider):
    name = "books_toscrape_com_llm"
    start_urls = [
        "http://books.toscrape.com/catalogue/category/books/mystery_3/index.html"
    ]

    def parse(self, response):
        next_page_links = response.css(".next a")
        yield from response.follow_all(next_page_links)
        book_links = response.css("article a")
        yield from response.follow_all(book_links, callback=self.parse_book)

    async def parse_book(self, response):
        prompts = {
            "name": "Product name",
            "price": "Product price as a number, without the currency symbol",
        }
        llm_data = await llm_parse(response, prompts)
        yield {
            "url": response.url,
            **llm_data,
        }

在上面的代码中:

首先定义了一个 llm_parse 函数,它接受 Scrapy 响应和要提取的字段字典及其字段特定提示。

然后,将响应转换为 Markdown 语法,以便 LLM 更轻松地解析,并向 LLM 发送一个提示,要求输入具有相应字段的 JSON 对象。

注意:构建一个以预期格式获取预期数据的提示是此过程中最困难的部分。此处的示例提示适用于 Mistral 7B 和  books.toscrape.com,但可能不适用于其他 LLM 或其他网站。

如果是有效的 JSON,则返回 LLM 结果。

使用字段提示调用 llm_parse 来提取名称和价格,并在包含非来自 LLM(url)的额外字段后生成结果字典。

现在可以运行你的代码:

scrapy crawl books_toscrape_com_llm -O books.csv

在大多数计算机上,执行将需要很长时间。运行 ollama serve 的终端中的日志将显示你的 LLM 如何获取提示并为其生成响应。

执行完成后,生成的 books.csv 文件将包含 books.toscrape.com 神秘类别中所有书籍的记录(CSV 格式)。您可以使用任何电子表格应用程序打开 books.csv

4、后续步骤

以下是一些后续步骤的想法:

  • 尝试其他 LLM。

上述代码中的以下一行通过 Ollama 的本地实例确定要使用的 LLM 是 Mistral 7B:

model="ollama/mistral"

如果你可以访问其他 LLM,则可以将此行更改为使用其他 LLM,并查看更改如何影响速度、质量和成本。

请参阅 LiteLLM 文档,了解许多不同 LLM 的设置说明。

  • 看看你是否可以获得与 Zyte API 自动提取相同的输出(例如产品),同时具有可比的速度、质量和成本。
  • 看看你是否还可以自动化抓取部分并实现与 Zyte 的 AI 驱动蜘蛛可以做的事情类似的目标。
  • 尝试提取源 HTML 中无法以结构化方式获得的数据,例如书籍作者,有时可以在书籍描述中找到。
  • 尝试提取源 HTML 中无法直接获得的数据,例如书籍语言(英语)、货币代码(GBP)或书籍描述的摘要。
  • 尝试不同的 HTML 清理方法,或者根本不进行清理。

上面的代码将响应 HTML 转换为 Markdown,因为这允许 Mistral 7B 按预期工作。其他 LLM 可能适用于原始 HTML,可能在经过一些清理之后(请参阅 clear-html),从而能够提取转换为 Markdown 时可能丢失的一些额外数据。

但请注意,LLM 的上下文长度有限,可能需要清理和修剪 HTML 才能将 HTML 放入提示中,而不会超过该上下文长度。

  • 如果你可以访问支持图像解析的 LLM,请查看是否可以扩展蜘蛛以下载书籍封面,并从中提取其他信息,例如书籍作者。
  • 不要每页使用一个 LLM,而是使用 LLM 根据第一页的原始 HTML 为所需字段生成 CSS 选择器,并使用这些选择器解析所有其他页面。

这样可以最大限度地减少 LLM 的使用,以获得更好的速度和成本,但对于具有多种不同布局或执行某些布局 A-B 测试的网站,或者网站在抓取过程中更改布局的不幸情况,可能会影响质量。


原文链接:Scrapy 大模型爬虫 - BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2186235.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python和C++混淆矩阵地理学医学物理学视觉语言模型和算法模型评估工具

🎯要点 优化损失函数评估指标海岸线检测算法评估遥感视觉表征和文本增强乳腺癌预测模型算法液体中闪烁光和切伦科夫光分离多标签分类任务性能评估有向无环图、多路径标记和非强制叶节点预测二元分类评估特征归因可信性评估马修斯相关系数对比其他准确度 Python桑…

骨传导耳机哪款好?全网最全的5大精品骨传导耳机测评报告分享

在追求高效运动体验与听觉享受的现代生活里,骨传导耳机以其独特的设计和创新技术吸引了众多用户的目光。相较于传统入耳式耳机,骨传导耳机通过振动头部骨骼而非耳膜来传输声音,不仅提供了更好的佩戴舒适度,还能在一定程度上保持对…

如何使用工具删除 iPhone 上的图片背景

在 iPhone 上删除背景图像变得简单易行。感谢最近 iOS 更新中引入的新功能。如今,iOS 用户现在可以毫不费力地删除背景,而无需复杂的应用程序。在这篇文章中,您将学习如何使用各种方法去除 iPhone 上的背景。这可确保您可以选择最适合您偏好的…

PMP--三模--解题--121-130

文章目录 14.敏捷--产品待办事项列表--敏捷中应对变更的方法就是不断地梳理需求的优先级。--要求产品负责人与客户确定事项的优先级。121、 [单选] 在迭代演示期间,客户注意到他们希望对产品进行改进。团队接下来应该做什么? 9.资源管理--认可与奖励--在…

C语言+单片机

今天内容有点水哈哈&#xff08;忙着练焊铁技术了嘻嘻&#xff09; C语言 简单学习了while语言以及其与for语言的区别和适用方法 .循环结构&#xff1a; 初始化语句条件判断句条件控制句 for语句 for(int1;i<100;i){执行条件} for (int i 1; i < 100; i) {printf(&quo…

YOLOv11改进 | 注意力篇 | YOLOv11引入MSDA多尺度空洞注意力

1. MSDA介绍 1.1 摘要&#xff1a;作为事实上的解决方案&#xff0c;鼓励使用普通视觉变换器&#xff08;ViT&#xff09;对任意图像块之间的远程依赖性进行建模&#xff0c;而全局参与感受野会导致二次计算成本。 Vision Transformers 的另一个分支利用了受 CNN 启发的局部注…

【Qt】控件概述 (1)

控件概述 1. QWidget核心属性1.1核心属性概述1.2 enable1.3 geometry——窗口坐标1.4 window frame的影响1.4 windowTitle——窗口标题1.5 windowIcon——窗口图标1.6 windowOpacity——透明度设置1.7 cursor——光标设置1.8 font——字体设置1.9 toolTip——鼠标悬停提示设置1…

征程6 工具链常用工具和 API 整理(含新手示例)

1.引言 征程6 工具链目前已经提供了比较丰富的集成化工具和接口来支持模型的移植和量化部署&#xff0c;本帖将整理常用的工具/接口以及使用示例来供大家参考&#xff0c;相信这篇文章会提升大家对 征程6 工具链的使用理解以及效率。 干货满满&#xff0c;欢迎访问 2.hb_con…

Windows 10再次成为Steam上最受欢迎的操作系统 Linux用户比例略有下降

上个月&#xff0c;Valve平台上使用Windows 11的玩家自三年前推出以来首次取代了 Windows 10。 然而&#xff0c;这一变化是短暂的–仅仅一个月后&#xff0c;Windows 10 又回到了第一的位置&#xff0c;但持续时间也可能不会太长。 根据 Valve 的数据&#xff0c;64 位 Window…

【动态规划】完全背包问题

完全背包问题 1. 完全背包 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你的支持是对我最大的鼓励&#xff0c;我们一起努力吧!&#x1f603;&#x1f603; 1. 完全背包 题目链接&#xff1a; DP42 【模板】完全背包 题目分…

微积分-反函数6.4(对数函数的导数)

在本节中&#xff0c;我们将找到对数函数 y log ⁡ b x y \log_b x ylogb​x 和指数函数 y b x y b^x ybx 的导数。我们从自然对数函数 y ln ⁡ x y \ln x ylnx 开始。我们知道它是可导的&#xff0c;因为它是可导函数 y e x y e^x yex 的反函数。 d d x ( ln ⁡ x…

计算机毕业设计 农场投入品运营管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

【JAVA开源】基于Vue和SpringBoot的医院管理系统

本文项目编号 T 062 &#xff0c;文末自助获取源码 \color{red}{T062&#xff0c;文末自助获取源码} T062&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 查…

Stream流的中间方法

一.Stream流的中间方法 注意1&#xff1a;中间方法&#xff0c;返回新的Stream流&#xff0c;原来的Stream流只能使用一次&#xff0c;建议使用链式编程 注意2&#xff1a;修改Stream流中的数据&#xff0c;不会影响原来集合或者数组中的数据 二.filter filter的主要用法是…

Win10/11电脑怎么折腾都进不去Bios?看这!

前言 这段时间有小伙伴反馈&#xff0c;按照很早之前小白写的进Bios教程&#xff0c;死活进不去Bios。 所以这个教程今天又更新了&#xff01; 咱们有一说一&#xff1a;有些机器的Bios是真的不知道快捷键是什么的。但按照今天的这篇&#xff0c;我想应该没有人进不去电脑的…

60 序列到序列学习(seq2seq)_by《李沐:动手学深度学习v2》pytorch版

系列文章目录 文章目录 系列文章目录一、理论知识比喻机器翻译Seq2seq编码器-解码器细节训练衡量生成序列的好坏的BLEU(值越大越好)总结 二、代码编码器解码器损失函数训练预测预测序列的评估小结练习 一、理论知识 比喻 seq2seq就像RNN的转录工作一样&#xff0c;非常形象的比…

YOLOv11改进 | 注意力篇 | YOLOv11引入Polarized Self-Attention注意力机制

1. Polarized Self-Attention介绍 1.1 摘要&#xff1a;像素级回归可能是细粒度计算机视觉任务中最常见的问题&#xff0c;例如估计关键点热图和分割掩模。 这些回归问题非常具有挑战性&#xff0c;特别是因为它们需要在低计算开销的情况下对高分辨率输入/输出的长期依赖性进行…

最新BurpSuite2024.9专业中英文开箱即用版下载

1、工具介绍 本版本更新介绍 此版本对 Burp Intruder 进行了重大改进&#xff0c;包括自定义 Bambda HTTP 匹配和替换规则以及对扫描 SOAP 端点的支持。我们还进行了其他改进和错误修复。 Burp Intruder 的精简布局我们对 Burp Intruder 进行了重大升级。现在&#xff0c;您可…

0基础学习CSS(十四)填充

CSS padding&#xff08;填充&#xff09; CSS padding&#xff08;填充&#xff09;是一个简写属性&#xff0c;定义元素边框与元素内容之间的空间&#xff0c;即上下左右的内边距。 padding&#xff08;填充&#xff09; 当元素的 padding&#xff08;填充&#xff09;内边距…

深入理解 Solidity 中的支付与转账:安全高效的资金管理攻略

在 Solidity 中&#xff0c;支付和转账是非常常见的操作&#xff0c;尤其是在涉及资金的合约中&#xff0c;比如拍卖、众筹、托管等。Solidity 提供了几种不同的方式来处理 Ether 转账&#xff0c;包括 transfer、send 和 call&#xff0c;每种方式的安全性、灵活性和复杂度各有…