【测试环境】
vs2019
netframework4.7.2
opencvsharp4.8.0
onnxruntime==1.16.2
【效果展示】
【实现部分代码】
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using OpenCvSharp;
namespace FIRC
{
public partial class Form1 : Form
{
Mat src = new Mat();
Yolov11Manager ym = new Yolov11Manager();
public Form1()
{
InitializeComponent();
}
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog openFileDialog = new OpenFileDialog();
openFileDialog.Filter = "图文件(*.*)|*.jpg;*.png;*.jpeg;*.bmp";
openFileDialog.RestoreDirectory = true;
openFileDialog.Multiselect = false;
if (openFileDialog.ShowDialog() == DialogResult.OK)
{
src = Cv2.ImRead(openFileDialog.FileName);
pictureBox1.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src);
}
}
private void button2_Click(object sender, EventArgs e)
{
if(pictureBox1.Image==null)
{
return;
}
Stopwatch sw = new Stopwatch();
sw.Start();
var result = ym.Inference(src);
sw.Stop();
this.Text = "耗时" + sw.Elapsed.TotalSeconds + "秒";
var resultMat = ym.DrawImage(result,src);
pictureBox2.Image= OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultMat); //Mat转Bitmap
}
private void Form1_Load(object sender, EventArgs e)
{
ym.LoadWeights(Application.StartupPath+ "\\weights\\yolo11n.onnx", Application.StartupPath + "\\weights\\labels.txt");
}
private void btn_video_Click(object sender, EventArgs e)
{
var detector = new Yolov11Manager();
detector.LoadWeights(Application.StartupPath + "\\weights\\yolo11n.onnx", Application.StartupPath + "\\weights\\labels.txt");
VideoCapture capture = new VideoCapture(0);
if (!capture.IsOpened())
{
Console.WriteLine("video not open!");
return;
}
Mat frame = new Mat();
var sw = new Stopwatch();
int fps = 0;
while (true)
{
capture.Read(frame);
if (frame.Empty())
{
Console.WriteLine("data is empty!");
break;
}
sw.Start();
var result = detector.Inference(frame);
var resultImg = detector.DrawImage(result,frame);
sw.Stop();
fps = Convert.ToInt32(1 / sw.Elapsed.TotalSeconds);
sw.Reset();
Cv2.PutText(resultImg, "FPS=" + fps, new OpenCvSharp.Point(30, 30), HersheyFonts.HersheyComplex, 1.0, new Scalar(255, 0, 0), 3);
//显示结果
Cv2.ImShow("Result", resultImg);
int key = Cv2.WaitKey(10);
if (key == 27)
break;
}
capture.Release();
}
}
}
【运行步骤】
(1)首先依据官方安装教程或者其他网站给的安装教程,安装好yolov8环境
(2)下载模型:https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt
(3)导出onnx模型:yolo export model=yolo11n.pt format=onnx dynamic=False opset=12
(4)然后将yolo11.onnx模型放进FIRC\bin\x64\Debug\weights
最后运行项目选择x64 Debug即可,由于初次运行可能报错,如果报错请查看https://blog.csdn.net/FL1623863129/article/details/135424751
解决方法
【视频演示】
C# winform部署yolov11目标检测的onnx模型_哔哩哔哩_bilibili【测试环境】vs2019netframework4.7.2opencvsharp4.8.0onnxruntime==1.16.2更多实现细节和源码下载参考博文:https://blog.csdn.net/FL1623863129/article/details/142688383, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:C# winform部署yolov10的onnx模型,YOLOv8 目标检测模型 原理解析,目标检测领如何快速水一篇论文?迪哥给你梳理最佳学习路径,快速拿结果毕业!YOLO全系列、DTER模型、R-CNN系列目标检测算法全详解!,一颗CV视觉AI领域的重磅炸弹!仅更改一行代码就让YOLOV11成为了最成熟、效果最好的目标检测模型!,不愧是GitHub大佬!半天就教会了我YOLO、SSD、FasterRCNN、FastRCNN、SPPNet、RCNN等六大目标检测算法!深度学习/物体检测,【2024】最全目标检测课程,带你从零开始入门YOLO、R-CNN、Faster-RCNN,小学生都看懂了!人工智能/YOLOv10/v9/v8/v7/v6,这可能是B站最完整的Transformer讲解了!一口气学完DETR⽬标检测、DETR项⽬源码解读、项⽬源码debug逐⾏解读、注意⼒机制的作⽤分析-人工智能,C#使用纯opencvsharp部署yolov8-onnx图像分类模型,用C#部署yolov8的tensorrt模型进行目标检测winform最快检测速度,C++使用纯opencv部署yolov9的onnx模型https://www.bilibili.com/video/BV1ic4jehE4C/?vd_source=989ae2b903ea1b5acebbe2c4c4a635ee
【完整源码下载】
https://download.csdn.net/download/FL1623863129/89836753