强化学习:通过试错学习最优策略---示例:使用Q-Learning解决迷宫问题

news2024/10/2 8:19:56

     强化学习(Reinforcement Learning, RL)是一种让智能体(agent)在与环境交互的过程中,通过最大化某种累积奖励来学习如何采取行动的学习方法。它适用于那些需要连续决策的问题,比如游戏、自动驾驶和机器人控制等。

强化学习的关键概念
  • 代理 (Agent): 学习并作出决策的实体。
  • 环境 (Environment): 代理与其交互的世界。
  • 状态 (State): 描述环境中当前情况的信息。
  • 动作 (Action): 代理可以执行的行为。
  • 奖励 (Reward): 环境对代理行为的反馈,用于指导学习过程。
  • 策略 (Policy): 决定给定状态下应采取何种动作的规则。
  • 价值函数 (Value Function): 预期未来奖励的估计。
示例:使用Q-Learning解决迷宫问题

将通过一个简单的迷宫问题来展示如何实现一个基本的强化学习算法——Q-Learning。在这个例子中目标是让代理找到从起点到终点的最短路径。

环境设置 我们首先定义迷宫的结构。假设迷宫是一个4x4的网格,其中包含墙壁、空地以及起始点和终点。

import numpy as np

# 定义迷宫布局
maze = np.array([
    [0, 1, 0, 0],
    [0, 1, 0, 0],
    [0, 0, 0, 1],
    [0, 0, 0, 0]
])

# 定义起始点和终点
start = (0, 0)
end = (3, 3)

# 动作空间
actions = ['up', 'down', 'left', 'right']

 Q-Learning算法实现

# 初始化Q表
q_table = np.zeros((maze.shape[0], maze.shape[1], len(actions)))

# 参数设置
alpha = 0.1  # 学习率
gamma = 0.95  # 折扣因子
epsilon = 0.1  # 探索概率
num_episodes = 1000  # 训练回合数

def choose_action(state, q_table, epsilon):
    if np.random.uniform(0, 1) < epsilon:
        action = np.random.choice(actions)  # 探索
    else:
        action_idx = np.argmax(q_table[state])
        action = actions[action_idx]  # 利用
    return action

def get_next_state(state, action):
    row, col = state
    if action == 'up' and row > 0 and maze[row - 1, col] == 0:
        next_state = (row - 1, col)
    elif action == 'down' and row < maze.shape[0] - 1 and maze[row + 1, col] == 0:
        next_state = (row + 1, col)
    elif action == 'left' and col > 0 and maze[row, col - 1] == 0:
        next_state = (row, col - 1)
    elif action == 'right' and col < maze.shape[1] - 1 and maze[row, col + 1] == 0:
        next_state = (row, col + 1)
    else:
        next_state = state
    return next_state

def update_q_table(q_table, state, action, reward, next_state, alpha, gamma):
    action_idx = actions.index(action)
    best_next_action_value = np.max(q_table[next_state])
    q_table[state][action_idx] += alpha * (reward + gamma * best_next_action_value - q_table[state][action_idx])

# 训练过程
for episode in range(num_episodes):
    state = start
    while state != end:
        action = choose_action(state, q_table, epsilon)
        next_state = get_next_state(state, action)
        
        # 假设到达终点时获得正奖励,否则无奖励
        reward = 1 if next_state == end else 0
        
        update_q_table(q_table, state, action, reward, next_state, alpha, gamma)
        
        state = next_state

# 测试最优策略
state = start
path = [state]
while state != end:
    action_idx = np.argmax(q_table[state])
    action = actions[action_idx]
    state = get_next_state(state, action)
    path.append(state)

print("Path from start to end:", path)
  • maze数组表示迷宫的布局,其中0代表空地,1代表墙。
  • q_table是一个三维数组,用来存储每个状态-动作对的价值。
  • choose_action函数根据ε-greedy策略选择动作,允许一定程度的探索。
  • get_next_state函数根据当前状态和动作返回下一个状态。
  • update_q_table函数更新Q表中的值,采用贝尔曼方程进行迭代更新。
  • 在训练过程中,代理会不断尝试不同的动作,并通过接收奖励来调整其行为策略。
  • 最后测试经过训练后的策略,输出从起点到终点的最佳路径。

    在实际问题中,可能还需要考虑更多复杂的因素,如更大的状态空间、连续的动作空间以及更复杂的奖励机制等。还有许多其他类型的强化学习算法,如Deep Q-Network (DQN)、Policy Gradients、Actor-Critic方法等,可以处理更加复杂的问题。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2184054.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

<<机器学习实战>>10-11节笔记:生成器与线性回归手动实现

10生成器与python实现 如果是曲线规律的数据集&#xff0c;则需要把模型变复杂。如果是噪音较大&#xff0c;则需要做特征工程。 随机种子的知识点补充&#xff1a; 根据不同库中的随机过程&#xff0c;需要用对应的随机种子&#xff1a; 比如 llist(range(5)) random.shuf…

Linux 实用工具Axel安装及使用教程(支持多线程下载)

一、Axel 简介 Axel 是一个轻量级的命令行下载加速器&#xff0c;旨在提高文件下载速度。 多线程下载: Axel 可以同时使用多个连接来下载文件&#xff0c;从而加快下载速度。断点续传: 支持中断后继续下载&#xff0c;避免重新开始下载整个文件。轻量级: 资源占用少&#xff0c…

G502 鼠标自定义(配合 karabiner)

朋友送了我一个 G502 多功能鼠标&#xff0c;除了鼠标正常的左键、右键和滑轮外&#xff0c;额外提供了 6 个按键&#xff0c;并且滑轮可以向左、向右、向下按下&#xff0c;共计 9 个自定义的按键。 虽然是 karabiner 的老用户&#xff0c;但一直在使用 TrackPad&#xff0c;所…

SpringBoot上传图片实现本地存储以及实现直接上传阿里云OSS

一、本地上传 概念&#xff1a;将前端上传的文件保存到自己的电脑 作用&#xff1a;前端上传的文件到后端&#xff0c;后端存储的是一个临时文件&#xff0c;方法执行完毕会消失&#xff0c;把临时文件存储到本地硬盘中。 1、导入文件上传的依赖 <dependency><grou…

C++ | Leetcode C++题解之第451题根据字符出现频率排序

题目&#xff1a; 题解&#xff1a; class Solution { public:string frequencySort(string s) {unordered_map<char, int> mp;int maxFreq 0;int length s.size();for (auto &ch : s) {maxFreq max(maxFreq, mp[ch]);}vector<string> buckets(maxFreq 1)…

MySQL--数据库约束(详解)

目录 一、前言二、概念三、数据库约束3.1 约束类型3.1.1 NOT NULL 约束3.1.2 UNIQUE (唯一&#xff09;3.1.3 DEFAULT&#xff08;默认&#xff09;3.1.4 PRIMARY KEY&#xff08;主键&#xff09;3.1.5 FOREIGN KEY&#xff08;外键&#xff09;3.1.6 CHECK 四、总结 一、前言…

Redis篇(最佳实践)(持续更新迭代)

介绍一&#xff1a;键值设计 一、优雅的key结构 Redis 的 Key 虽然可以自定义&#xff0c;但最好遵循下面的几个最佳实践约定&#xff1a; 遵循基本格式&#xff1a;[业务名称]:[数据名]:[id]长度不超过 44 字节不包含特殊字符 例如&#xff1a; 我们的登录业务&#xff0…

十四、磁盘的管理

1.磁盘初始化 Step1:进行低级格式化(物理格式化)&#xff0c;将磁盘的各个磁道划分为扇区。一个扇区通常可分为头、数据区域(如512B大小)、尾 三个部分组成。管理扇区所需要的各种数据结构一般存放在头、尾两个部分&#xff0c;包括扇区校验码(如奇偶校验、CRC循环几余校验码等…

Azkaban:大数据任务调度与编排工具的安装与使用

在当今大数据时代&#xff0c;数据处理和分析任务变得越来越复杂。一个完整的大数据分析系统通常由大量任务单元组成&#xff0c;如 shell 脚本程序、mapreduce 程序、hive 脚本、spark 程序等。这些任务单元之间存在时间先后及前后依赖关系&#xff0c;为了高效地组织和执行这…

【架构】prometheus+grafana系统监控

文章目录 一、Prometheus简介二、Grafana简介三、PrometheusGrafana系统监控的实现四、优势与应用场景 参考 PrometheusGrafana系统监控是一个强大的组合&#xff0c;用于实时监控和分析系统的性能与状态。以下是对这一组合在系统监控中的详细解析&#xff1a; 一、Prometheus…

postgresql僵尸进程的处理思路

简介 僵尸进程&#xff08;zombie process&#xff09;是指一个已经终止但仍然在进程表中保留条目的进程。正常情况下&#xff0c;当一个进程完成执行并退出时&#xff0c;操作系统会通过父进程调用的wait()或waitpid()系统调用来收集该子进程的退出状态。如果父进程未及时调用…

快速了解:MySQL InnoDB和MyISAM的区别

目录 一、序言二、InnoDB和MyISAM对比1、InnoDB特性支持如下2、MyISAM特性支持如下 三、两者核心区别1、事务支持2、锁机制3、索引结构4、缓存机制5、故障恢复6、使用场景 一、序言 在MySQL 8.0中&#xff0c;InnoDB是默认的存储引擎。除了InnoDB&#xff0c;MySQL还支持其它的…

SQL - 函数

1. 操作类函数 这一类函数针对数据结构&#xff0c;表格进行筛选操作 1.1 GROUP BY 根据某个单一列中属性或者多个列对结果集进行分组 SELECT column1, SUM(column2) FROM table GROUP BY column1; 上述代码将所选择列进行column1中的属性分组&#xff0c;作为每一行的索引…

如何在idea使用RabbitMQ

一.RabbitMQ的安装和访问 1.在linux虚拟机安装RabbitMQ docker run -d --name rabbitmq -p 5671:5671 -p 5672:5672 -p 4369:4369 -p 25672:25672 -p 15671:15671 -p 15672:15672 rabbitmq:3.9.9-management 2.启动RabbitMQ docker start rabbitmq 3.访问 RabbitMQ网页 在自…

【Python】Uvicorn:Python 异步 ASGI 服务器详解

Uvicorn 是一个为 Python 设计的 ASGI&#xff08;异步服务器网关接口&#xff09;Web 服务器。它填补了 Python 在异步框架中缺乏一个最小化低层次服务器/应用接口的空白。Uvicorn 支持 HTTP/1.1 和 WebSockets&#xff0c;是构建现代异步Web应用的强大工具。 ⭕️宇宙起点 &a…

C++网络编程之IP地址和端口

概述 IP地址和端口共同定义了网络通信中的源和目标。IP地址负责将数据从源设备正确地传输到目标设备&#xff0c;而端口则确保在目标设备上数据被交付到正确的应用或服务。因此&#xff0c;在网络编程中&#xff0c;IP地址和端口是密不可分的两个概念&#xff0c;共同构成了网络…

Why RTSP?RTSP播放器优势探究

RTSP优势探究 好多开发者搞不清楚&#xff0c;低延迟的传输&#xff0c;到底是走RTMP、WebRTC还是RTSP&#xff1f;如果走RTSP&#xff0c;RTSP播放器的优势有哪些&#xff1f;能否达到期望的延迟&#xff1f;答案是肯定的&#xff0c;废话不多说&#xff0c;上效果图&#xf…

Power apps:一次提交多项申请

1、添加一个Form&#xff0c;导入sharepoint列表&#xff0c;添加确认&#xff0c;继续&#xff0c;取消按钮 2、在页面的onvisible属性中添加 Set(applynumber,Last(付款申请表).申请编号1); #定义一个申请编号变量&#xff0c;每次申请&#xff0c;就将列表最后一个…

医疗陪诊APP开发实战:从互联网医院系统源码开始

本文将从互联网医院系统源码出发&#xff0c;深入探讨医疗陪诊APP的开发实战。 一、从互联网医院系统源码入手 开发医疗陪诊APP的基础在于互联网医院系统的源码。互联网医院系统通常包括以下几个模块&#xff1a; 1.用户管理&#xff1a;用户注册、登录、信息管理等功能。 …