java实现的无头单向非循环链表
- ArrayList的缺陷
- 链表
- 链表的概念及结构
- 无头单向非循环链表的实现
- 链表OJ题
ArrayList的缺陷
由于ArrayList底层是一段连续空间,当在ArrayList任意位置插入或者删除元素时,就需要将后序元素整体往前或者往后搬移,时间复杂度为O(N),效率比较低,因此ArrayList不适合做任意位置插入和删除比较多的场景,因此java集合中又引入了LinkedList,即链表结构。
链表
链表的概念及结构
链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序是通过链表中的引用链接次序实现的。
链式结构在逻辑上是连续的,但是在物理上不一定连续,现实中的结点一般是从堆上申请出来的,从堆上申请的空间,是按照一定的策略来分配的,两次申请的空间可能连续,也可能不连续
实际中链表的结构非常多样,以下情况组合起来就有8种链表结构:
-
单向或者双向
-
带头或者不带头
-
循环或者非循环
所以有八种链表结构
单向带头循环链表,双向带头循环链表
单向不带头循环链表,双向不带头循环链表
单向带头非循环链表,双向带头非循环链表
单向不带头非循环链表,双向不带头非循环链表
虽然有这么多的链表的结构,重点需要我们掌握两种:
- 无头单向非循环链表:结构简单,一般不会单独用来存数据,实际中更多是作为其他数据结构的子结构,如哈希,图的邻接表等等
- 无头双向链表:在java的集合框架中LinkedList底层实现就是无头双向循环链表。
无头单向非循环链表的实现
public interface IList {
//头插法
public void addFirst(int data);
//尾插法
public void addLast(int data);
//任意位置插入,第一个数据节点为0号下标
public void addIndex(int index,int data);
//查找是否包含关键字key是否在单链表当中
public boolean contains(int key);
//删除第一次出现关键字为key的节点
public void remove(int key);
//删除所有值为key的节点
public void removeAllKey(int key);
//得到单链表的长度
public int size();
public void clear();
public void display();
}
public class MySingleList implements IList{
//静态内部类创建节点
static class LinkNode{
public int value;
public LinkNode next;
public LinkNode(int value) {
this.value = value;
}
}
public LinkNode head;
@Override
public void addFirst(int data) {
}
@Override
public void addLast(int data) {
}
@Override
public void addIndex(int index, int data) {
}
@Override
public boolean contains(int key) {
return false;
}
@Override
public void remove(int key) {
}
@Override
public void removeAllKey(int key) {
}
@Override
public int size() {
return 0;
}
@Override
public void clear() {
}
@Override
public void display() {
}
}
我们先从打印链表开始,如果我们使用head引用来遍历打印,直到遇到null,到最后head到了null,我们就找不到头节点了,所以我们可以另外使用一个cur引用来遍历。
@Override
public void display() {
LinkNode cur = this.head;
while(cur != null){
System.out.print(cur.value + " ");
cur = cur.next;
}
System.out.println();
}
我们可以通过自己手动创建链表,来测试我们的打印链表方法
public void createSingleLink(){
LinkNode node0 = new LinkNode(12);
LinkNode node1 = new LinkNode(23);
LinkNode node2 = new LinkNode(34);
LinkNode node3 = new LinkNode(45);
LinkNode node4 = new LinkNode(56);
this.head = node0;
node0.next = node1;
node1.next = node2;
node2.next = node3;
node3.next = node4;
node4.next = null;
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.createSingleLink();
list.display();
}
//结果为:12 23 34 45 56
}
接下来实现size()求链表节点个数,依然通过一个cur来遍历并计数。
@Override
public int size() {
int count = 0;
LinkNode cur = this.head;
while(cur != null){
count++;
cur = cur.next;
}
return count;
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.createSingleLink();
System.out.println(list.size());
}
//结果为:5
}
接下来实现查找是否包含关键字key是否在单链表当中的方法,我们依然通过遍历找到该key,返回true,找不到返回false
@Override
public boolean contains(int key) {
LinkNode cur = this.head;
while(cur != null){
if(cur.value == key){
return true;
}
cur = cur.next;
}
return false;
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.createSingleLink();
//12 23 34 45 56
System.out.println(list.contains(12));
System.out.println(list.contains(34));
System.out.println(list.contains(56));
System.out.println(list.contains(100));
}
//结果为:true
//true
//true
//false
}
接下来实现头插法,也就是在链表头部插入节点
@Override
public void addFirst(int data) {
LinkNode newNode = new LinkNode(data);
newNode.next = this.head;
this.head = newNode;
}
public class Test {
public static void main(String[] args) {
MySingleList list1 = new MySingleList();
list1.createSingleLink();
list1.addFirst(99);
list1.display();
MySingleList list = new MySingleList();
list.addFirst(56);
list.addFirst(45);
list.addFirst(34);
list.addFirst(23);
list.addFirst(12);
list.addFirst(99);
list.display();
}
//结果为:
//99 12 23 34 45 56
//99 12 23 34 45 56
}
接下来实现尾插法,我们需要先找到尾节点,再进行插入,还有我们还要考虑到如果链表为空时,代码是否能执行,是否需要我们再对其另外的实现
@Override
public void addLast(int data) {
LinkNode newNode = new LinkNode(data);
//如果链表为空
if(this.head == null){
this.head = newNode; //直接将head指向新结点
return;
}
//链表非空
//首先找到尾结点
LinkNode cur = this.head;
while(cur.next != null){ //当cur走到尾结点,cur.next == null退出循环,cur指向尾结点
cur = cur.next;
}
cur.next = newNode;
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.addLast(12);
list.addLast(23);
list.addLast(34);
list.addLast(45);
list.addLast(56);
list.addLast(99);
list.display();
}
//结果为:
//12 23 34 45 56 99
}
接下来实现任意位置插入的方法,第一个数据节点为0号下标,任意位置插入涉及尾插,头插,还有中间插入,中间插入需要修改前后指向,所以需要找到插入位置的前一个,就可以实现互相绑定,而且绑定有一个规律:所有的绑定,优先绑定后面。如果优先绑定前面,可能会出现问题,例如该方法。还有我们要考虑到任意位置,是所有位置吗,我们还需要对index进行检查,不能小于0,也不能大于size();
如果先绑定前面会出现什么问题呢?
public class IndexIllegal extends RuntimeException{
public IndexIllegal() {
}
public IndexIllegal(String message) {
super(message);
}
}
private void checkIndex(int index) throws IndexIllegal{
if(index < 0 || index > size()){
throw new IndexIllegal("插入位置不合法");
}
}
@Override
public void addIndex(int index, int data) {
try{
checkIndex(index);
int len = size(); //用一个变量存储就不用一直调用方法
if(index == 0){
addFirst(data);
return;
}
if(index == len){
addLast(data);
return;
}
LinkNode newNode = new LinkNode(data);
LinkNode cur = this.head;
while(index - 1 != 0){
cur = cur.next;
index--;
}
newNode.next = cur.next;
cur.next = newNode;
}catch(IndexIllegal e){
e.printStackTrace();
}
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.addLast(12);
list.addLast(23);
list.addLast(34);
list.addLast(45);
list.addLast(56);
list.display();
list.addIndex(0,11);
list.display();
list.addIndex(6,66);
list.display();
list.addIndex(3,33);
list.display();
//list.addIndex(100,77);
}
//结果为:
//12 23 34 45 56
//11 12 23 34 45 56
//11 12 23 34 45 56 66
//11 12 23 33 34 45 56 66
}
接下来实现删除第一次出现关键字为key的节点的方法
@Override
public void remove(int key) {
if(this.head == null){
return;
}
if(this.head.value == key){
this.head = this.head.next;
return;
}
LinkNode cur = this.head;
while(cur.next != null){
if(cur.next.value == key){
LinkNode del = cur.next;
cur.next = del.next; //也可以写成 cur.next = cur.next.next;
return;
}
cur = cur.next;
}
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.addLast(12);
list.addLast(23);
list.addLast(34);
list.addLast(45);
list.addLast(56);
list.display();
list.remove(12);
list.display();
list.remove(56);
list.display();
list.remove(34);
list.display();
}
//结果为:
//12 23 34 45 56
//23 34 45 56
//23 34 45
//23 45
}
接下来实现删除所有值为key的节点的方法
@Override
public void removeAllKey(int key) {
//如果链表为空,不能删
if(this.head == null){
return;
}
LinkNode prev = this.head;
LinkNode cur = this.head.next;
while(cur != null){
if(cur.value == key){
prev.next = cur.next;
cur = cur.next;
}else{
prev = cur;
cur = cur.next;
}
}
if(this.head.value == key){
this.head = this.head.next;
}
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.addLast(23);
list.addLast(23);
list.addLast(34);
list.addLast(23);
list.addLast(56);
list.display();
list.removeAllKey(23);
list.display();
}
//结果为:
//23 23 34 23 56
//34 56
}
最后我们要实现的是清空链表
@Override
public void clear() {
LinkNode cur = this.head;
while(cur != null){
LinkNode curN = cur.next;
cur.next = null;
cur = curN;
}
this.head = null;
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.addLast(23);
list.addLast(23);
list.addLast(34);
list.addLast(23);
list.addLast(56);
list.display();
list.clear();
list.display();
}
//结果为:
//23 23 34 23 56
//
}
链表OJ题
- 反转一个单链表。 链接
给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode reverseList(ListNode head) {
if(head == null){
return head;
}
ListNode cur = head.next;
head.next = null;
while(cur != null){
ListNode curN = cur.next;
cur.next = head;
head = cur;
cur = curN;
}
return head;
}
}
- 给定一个带有头结点head的非空链表,返回链表的中间结点。如果有两个中间结点,则返回第二个中间结点。 链接
给你单链表的头结点 head ,请你找出并返回链表的中间结点。如果有两个中间结点,则返回第二个中间结点。
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode middleNode(ListNode head) {
if(head == null){
return head;
}
ListNode slow = head;
ListNode fast = head;
while(fast != null && fast.next != null){
slow = slow.next;
fast = fast.next.next;
}
return slow;
}
}
- 输入一个链表,输出该链表中倒数第k个节点。 链接
实现一种算法,找出单向链表中倒数第 k 个节点。返回该节点的值。
说明:给定的 k 保证是有效的。
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public int kthToLast(ListNode head, int k) {
if(head == null){
return -1;
}
if(k < 0){
return -1;
}
//需要求长度
// if(k > 5){
// return -1;
// }
ListNode slow = head;
ListNode fast = head;
while(k - 1 != 0){
fast = fast.next;
if(fast == null){
return -1;
}
k--;
}
while(fast.next != null){
fast = fast.next;
slow = slow.next;
}
return slow.val;
}
}
- 将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。链接
将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
if(list1 == null){
return list2;
}
if(list2 == null){
return list1;
}
ListNode newH = new ListNode(-1);
ListNode tmp = newH;
while(list1 != null && list2 != null){
if(list1.val < list2.val){
tmp.next = list1;
tmp = tmp.next;
list1 = list1.next;
}else{
tmp.next = list2;
tmp = tmp.next;
list2 = list2.next;
}
}
if(list1 != null){
tmp.next = list1;
}
if(list2 != null){
tmp.next = list2;
}
return newH.next;
}
}
- 编写代码,以给定值x为基准将链表分割成两部分,所有小于x的结点排在大于或等于x的结点之前 。链接
现有一链表的头指针 ListNode* pHead,给一定值x,编写一段代码将所有小于x的结点排在其余结点之前,且不能改变原来的数据顺序,返回重新排列后的链表的头指针。
import java.util.*;
/*
public class ListNode {
int val;
ListNode next = null;
ListNode(int val) {
this.val = val;
}
}*/
public class Partition {
public ListNode partition(ListNode pHead, int x) {
// write code here
ListNode cur = pHead;
ListNode beforeBegin = null;
ListNode beforeEnd = null;
ListNode afterBegin = null;
ListNode afterEnd = null;
while(cur != null){
if(cur.val < x){
if(beforeBegin == null){
beforeBegin = beforeEnd = cur;
}else{
beforeEnd.next = cur;
beforeEnd = beforeEnd.next;
}
}else{
if(afterBegin == null){
afterBegin = afterEnd = cur;
}else{
afterEnd.next = cur;
afterEnd = afterEnd.next;
}
}
cur = cur.next;
}
if(beforeBegin == null){
return afterBegin;
}
beforeEnd.next = afterBegin;
if(afterEnd != null){
afterEnd.next = null;
}
return beforeBegin;
}
}
- 链表的回文结构。
对于一个链表,请设计一个时间复杂度为O(n),额外空间复杂度为O(1)的算法,判断其是否为回文结构。
给定一个链表的头指针A,请返回一个bool值,代表其是否为回文结构。保证链表长度小于等于900。
链接
import java.util.*;
/*
public class ListNode {
int val;
ListNode next = null;
ListNode(int val) {
this.val = val;
}
}*/
public class PalindromeList {
public boolean chkPalindrome(ListNode A) {
// write code here
ListNode slow = A;
ListNode fast = A;
while(fast != null && fast.next != null){
slow = slow.next;
fast = fast.next.next;
}
ListNode cur = slow.next;
while(cur != null){
ListNode curN = cur.next;
cur.next = slow;
slow = cur;
cur = curN;
}
fast = A;
while(fast != slow){
if(slow.val != fast.val){
return false;
}
if(fast.next == slow){
return true;
}
slow = slow.next;
fast = fast.next;
}
return true;
}
}
- 输入两个链表,找出它们的第一个公共结点。链接
给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。
图示两个链表在节点 c1 开始相交:
题目数据 保证 整个链式结构中不存在环。
注意,函数返回结果后,链表必须 保持其原始结构 。
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
ListNode pLong = headA;
ListNode pShort = headB;
int lenA = 0;
int lenB = 0;
while(pLong != null){
lenA++;
pLong = pLong.next;
}
while(pShort != null){
lenB++;
pShort = pShort.next;
}
pLong = headA;
pShort = headB;
int len = lenA - lenB;
if(len < 0){
pLong = headB;
pShort = headA;
len = lenB - lenA;
}
while(len != 0){
pLong = pLong.next;
len--;
}
while(pLong != pShort){
pLong = pLong.next;
pShort = pShort.next;
}
if(pLong == null){
return null; //没相交
}
return pLong;
}
}
- 给定一个链表,判断链表中是否有环。链接
给你一个链表的头节点 head ,判断链表中是否有环。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。注意:pos 不作为参数进行传递 。仅仅是为了标识链表的实际情况。
如果链表中存在环 ,则返回 true 。 否则,返回 false 。
思路:快慢指针,即慢指针一次走一步,快指针一次走两步,两个指针从链表起始位置开始运行,如果链表带环则一定会在环中相遇,否则快指针率先走到链表是末尾。
- 为什么指针每次走两步,慢指针走一步可以?
假设链表带环,两个指针最后都会进入环,快指针先进环,慢指针后进环,当慢指针刚进环时,可能就和快指针相遇了,最差情况下两个指针之间的距离刚好就是环的长度,此时两个指针每移动一次,之间的距离就缩小一步,不会出现每次刚好是套圈的情况,因此:在慢指针走到一圈之前,快指针肯定是可以追上慢指针的,即相遇。 - 快指针一次走3步,走4步,…n步行吗?
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public boolean hasCycle(ListNode head) {
ListNode fast = head;
ListNode slow = head;
while(fast != null && fast.next != null){
fast = fast.next.next;
slow = slow.next;
if(fast == slow){
return true;
}
}
return false;
}
}
- 给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 NULL。链接
给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。
不允许修改链表。
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode fast = head;
ListNode slow = head;
while(fast != null && fast.next != null){
fast = fast.next.next;
slow = slow.next;
if(fast == slow){
break;
}
}
if(fast == null || fast.next == null){
return null;
}
slow = head;
while(slow != fast){
slow = slow.next;
fast = fast.next;
}
return slow;
}
}
对于无头单向非循环链表就学习到这了,希望这篇文章对你有帮助。