目录
- 一、Text2SQL简介
- 二、基于TDSQL-C Serverless的Text2SQL实战
- 2.1、程序流程图
- 2.2、实践流程
- 2.2.1、配置TDSQL-C
- 2.2.2、部署LLAMA模型
- 2.2.3、本地依赖安装
- 2.2.4、应用构建
- 2.3、运行效果
- 三、Text2SQL下的AI驱动
Text2SQL 是一种将自然语言查询转换为 SQL 查询的技术,旨在使用户能够以更直观和自然的方式与数据库进行交互,而无需深入了解 SQL 语法。本篇通过 Python + Langchain + Llama大模型 + TDSQL-C Serverless 的框架,开发完成 AI电商数据分析系统 Demo的构建和部署。
一、Text2SQL简介
Text2SQL 是一种将自然语言查询转换为 SQL 查询的技术,其核心工作原理涉及自然语言处理和语义理解。用户可以通过输入自然语言问题来与数据库进行交互,而无需了解 SQL 语法。系统首先分析用户的输入,识别出关键字和查询意图,然后根据数据库的结构生成相应的 SQL 查询。
在工作过程中,Text2SQL 首先利用自然语言处理技术,解析用户的语言,提取出查询的主题、操作和条件。例如,当用户输入“找出2023年销售额最高的产品”时,系统需要理解“2023年”作为时间条件,“销售额”作为数值字段,以及“最高的产品”表示需要对结果进行排序和限制输出。接着,系统会将这些信息映射到数据库的表和字段上,生成具体的 SQL 查询。
在应用场景方面,Text2SQL 使非技术用户能够更轻松地从数据库中提取信息,帮助企业快速获取关键信息,促进数据驱动决策的制定。教育领域也逐渐采用 Text2SQL,以帮助学习者理解数据库查询的逻辑,提高他们的学习效率。
二、基于TDSQL-C Serverless的Text2SQL实战
2.1、程序流程图
整个系统的流程整个流程从用户提出自然语言问题,到自动生成 SQL 查询,再到数据的可视化呈现,形成了一个完整的闭环,极大地简化了数据分析的过程
- 首先,从用户提问开始,用户通过自然语言输入他们的查询需求,比如想知道“今年销售额最高的商品是什么”。此时系统会接收到用户的提问并进入 SQL 查询链。
- 然后,大语言模型(LLM)会解析用户的自然语言输入,理解用户的意图,然后结合数据库的结构信息,生成相应的 SQL 查询语句。
- 其次,生成的 SQL 语句随后通过 Langchain 等数据库工具执行。Langchain 通过连接大语言模型与数据库,帮助将自动生成的 SQL 语句提交给数据库执行,并获取查询结果。当数据库查询完毕后,返回的结果通常是结构化的数据,比如销售额、产品信息等,这些数据随后会传递回 LLM。
- 在获取到数据之后,LLM 的工作并未结束。系统会再次调用 LLM,根据查询返回的结果,生成数据可视化的代码。本篇文章使用的是 Plotly,根据数据的特征,生成合适的 Plotly 代码,创建相应的图表,比如销售趋势图、柱状图或饼图。
- 最后,生成的 Plotly 代码会被执行,最终生成可视化的图表。
2.2、实践流程
2.2.1、配置TDSQL-C
本篇实践使用了云原生数据库 TDSQL-C(Cloud Native Database TDSQL-C)。TDSQL-C 是腾讯云自研的新一代高性能高可用的企业级分布式云数据库。融合了传统数据库、云计算与新硬件技术的优势,100%兼容 MySQL 和 PostgreSQL,实现超百万级 QPS 的高吞吐,海量分布式智能存储,保障数据安全可靠。
首先,进入官网,点击立即选购:
选定的服务器为 serverless 的服务器,数据库引擎采用MySQL,地域可以随意,选离自己近的就好。
设置数据库密码与配置信息后,前往数据库管理界面,开启实例公网访问:
开启公网链接后,会得到一个公网ip,记下他,后面会用到。然后点击登录在线管理工具
进入数据库后,点击新建库,新建数据库 shop
然后,点击新建的shop表,点击打开SQL窗口:
将以下SQL语句输入到SQL语句输入框中:
CREATE TABLE `ecommerce_sales_stats` (
`category_id` int NOT NULL COMMENT '分类ID(主键)',
`category_name` varchar(100) NOT NULL COMMENT '分类名称',
`total_sales` decimal(15,2) NOT NULL COMMENT '总销售额',
`steam_sales` decimal(15,2) NOT NULL COMMENT 'Steam平台销售额',
`offline_sales` decimal(15,2) NOT NULL COMMENT '线下实体销售额',
`official_online_sales` decimal(15,2) NOT NULL COMMENT '官方在线销售额',
PRIMARY KEY (`category_id`)
) ENGINE=INNODB DEFAULT CHARSET=utf8mb4 AUTO_INCREMENT=1 COMMENT='电商分类销售统计表';
INSERT INTO `ecommerce_sales_stats` VALUES (1,'电子产品',150000.00,80000.00,30000.00,40000.00),(2,'服装',120000.00,20000.00,60000.00,40000.00),(3,'家居用品',90000.00,10000.00,50000.00,30000.00),(4,'玩具',60000.00,5000.00,30000.00,25000.00),(5,'书籍',45000.00,2000.00,20000.00,23000.00),(6,'运动器材',70000.00,15000.00,25000.00,30000.00),(7,'美容护肤',80000.00,10000.00,30000.00,40000.00),(8,'食品',50000.00,5000.00,25000.00,20000.00),(9,'珠宝首饰',30000.00,2000.00,10000.00,18000.00),(10,'汽车配件',40000.00,10000.00,15000.00,25000.00),(11,'手机配件',75000.00,30000.00,20000.00,25000.00),(12,'电脑配件',85000.00,50000.00,15000.00,20000.00),(13,'摄影器材',50000.00,20000.00,15000.00,15000.00),(14,'家电',120000.00,60000.00,30000.00,30000.00),(15,'宠物用品',30000.00,3000.00,12000.00,16800.00),(16,'母婴用品',70000.00,10000.00,30000.00,30000.00),(17,'旅行用品',40000.00,5000.00,15000.00,20000.00),(18,'艺术品',25000.00,1000.00,10000.00,14000.00),(19,'健康产品',60000.00,8000.00,25000.00,27000.00),(20,'办公用品',55000.00,2000.00,20000.00,33000.00);
CREATE TABLE `users` (
`user_id` int NOT NULL AUTO_INCREMENT COMMENT '用户ID(主键,自增)',
`full_name` varchar(100) NOT NULL COMMENT '用户全名',
`username` varchar(50) NOT NULL COMMENT '用户名',
`email` varchar(100) NOT NULL COMMENT '用户邮箱',
`password_hash` varchar(255) NOT NULL COMMENT '用户密码的哈希值',
`created_at` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`updated_at` datetime DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
`is_active` tinyint(1) DEFAULT '1' COMMENT '是否激活',
PRIMARY KEY (`user_id`),
UNIQUE KEY `email` (`email`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COMMENT='用户表';
INSERT INTO `users` VALUES (1,'张伟','zhangwei','zhangwei@example.com','hashed_password_1','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(2,'李娜','lina','lina@example.com','hashed_password_2','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(3,'王芳','wangfang','wangfang@example.com','hashed_password_3','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(4,'刘洋','liuyang','liuyang@example.com','hashed_password_4','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(5,'陈杰','chenjie','chenjie@example.com','hashed_password_5','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(6,'杨静','yangjing','yangjing@example.com','hashed_password_6','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(7,'赵强','zhaoqiang','zhaoqiang@example.com','hashed_password_7','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(8,'黄丽','huangli','huangli@example.com','hashed_password_8','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(9,'周杰','zhoujie','zhoujie@example.com','hashed_password_9','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(10,'吴敏','wumin','wumin@example.com','hashed_password_10','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(11,'郑伟','zhengwei','zhengwei@example.com','hashed_password_11','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(12,'冯婷','fengting','fengting@example.com','hashed_password_12','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(13,'蔡明','caiming','caiming@example.com','hashed_password_13','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(14,'潘雪','panxue','panxue@example.com','hashed_password_14','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(15,'蒋磊','jianglei','jianglei@example.com','hashed_password_15','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(16,'陆佳','lujia','lujia@example.com','hashed_password_16','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(17,'邓超','dengchao','dengchao@example.com','hashed_password_17','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(18,'任丽','renli','renli@example.com','hashed_password_18','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(19,'彭涛','pengtao','pengtao@example.com','hashed_password_19','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(20,'方圆','fangyuan','fangyuan@example.com','hashed_password_20','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(21,'段飞','duanfei','duanfei@example.com','hashed_password_21','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(22,'雷鸣','leiming','leiming@example.com','hashed_password_22','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(23,'贾玲','jialing','jialing@example.com','hashed_password_23','2024-08-18 04:07:18','2024-08-18 04:07:18',1);
CREATE TABLE `orders` (
`order_id` int NOT NULL AUTO_INCREMENT,
`user_id` int DEFAULT NULL,
`order_amount` decimal(10,2) DEFAULT NULL,
`order_status` varchar(20) DEFAULT NULL,
`order_time` datetime DEFAULT NULL,
PRIMARY KEY (`order_id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 ;
INSERT INTO `orders` VALUES (1,3,150.50,'已支付','2024-08-23 10:01:00'),(2,7,89.20,'待支付','2024-08-23 10:03:15'),(3,12,230.00,'已支付','2024-08-23 10:05:30'),(4,2,99.90,'已发货','2024-08-23 10:07:45'),(5,15,120.00,'待发货','2024-08-23 10:10:00'),(6,21,180.50,'已支付','2024-08-23 10:12:15'),(7,4,105.80,'待支付','2024-08-23 10:14:30'),(8,18,210.00,'已支付','2024-08-23 10:16:45'),(9,6,135.20,'已发货','2024-08-23 10:19:00'),(10,10,160.00,'待发货','2024-08-23 10:21:15'),(11,1,110.50,'已支付','2024-08-23 10:23:30'),(12,22,170.80,'待支付','2024-08-23 10:25:45'),(13,8,145.20,'已发货','2024-08-23 10:28:00'),(14,16,190.00,'待发货','2024-08-23 10:30:15'),(15,11,125.50,'已支付','2024-08-23 10:32:30'),(16,19,165.20,'待支付','2024-08-23 10:34:45'),(17,5,130.00,'已发货','2024-08-23 10:37:00'),(18,20,175.80,'待发货','2024-08-23 10:39:15'),(19,13,140.50,'已支付','2024-08-23 10:41:30'),(20,14,155.20,'待支付','2024-08-23 10:43:45'),(21,9,135.50,'已发货','2024-08-23 10:46:00'),(22,23,185.80,'待发货','2024-08-23 10:48:15'),(23,17,160.50,'已支付','2024-08-23 10:50:30'),(24,12,145.20,'待支付','2024-08-23 10:52:45'),(25,3,130.00,'已发货','2024-08-23 10:55:00'),(26,8,115.50,'已支付','2024-08-23 10:57:15'),(27,19,120.20,'待支付','2024-08-23 10:59:30'),(28,6,145.50,'已发货','2024-08-23 11:01:45'),(29,14,130.20,'待支付','2024-08-23 11:04:00'),(30,5,125.50,'已支付','2024-08-23 11:06:15'),(31,21,135.20,'待支付','2024-08-23 11:08:30'),(32,7,140.50,'已发货','2024-08-23 11:10:45'),(33,16,120.20,'待支付','2024-08-23 11:13:00'),(34,10,135.50,'已支付','2024-08-23 11:15:15'),(35,2,140.20,'待支付','2024-08-23 11:17:30'),(36,12,145.20,'待支付','2024-08-23 12:00:00'),(37,15,130.20,'已支付','2024-08-23 12:02:15'),(38,20,125.50,'待发货','2024-08-23 12:04:30'),(39,17,135.20,'已支付','2024-08-23 12:06:45'),(40,4,140.50,'待支付','2024-08-23 12:09:00'),(41,10,120.20,'已发货','2024-08-23 12:11:15'),(42,13,135.50,'已支付','2024-08-23 12:13:30'),(43,18,145.20,'待支付','2024-08-23 12:15:45'),(44,6,130.20,'已发货','2024-08-23 12:18:00'),(45,11,125.50,'已支付','2024-08-23 12:20:15'),(46,19,135.20,'待支付','2024-08-23 12:22:30'),(47,5,140.50,'已发货','2024-08-23 12:24:45'),(48,20,120.20,'待支付','2024-08-23 12:27:00'),(49,17,135.50,'已支付','2024-08-23 12:29:15'),(50,4,145.20,'待支付','2024-08-23 12:31:30'),(51,10,130.20,'已发货','2024-08-23 12:33:45'),(52,13,125.50,'已支付','2024-08-23 12:36:00'),(53,18,135.20,'待支付','2024-08-23 12:38:15'),(54,6,140.50,'已发货','2024-08-23 12:40:30'),(55,11,120.20,'待支付','2024-08-23 12:42:45'),(56,19,135.50,'已支付','2024-08-23 12:45:00'),(57,5,145.20,'待支付','2024-08-23 12:47:15'),(58,20,130.20,'已发货','2024-08-23 12:49:30'),(59,17,125.50,'已支付','2024-08-23 13:01:45'),(60,4,135.20,'待支付','2024-08-23 13:04:00'),(61,10,140.50,'已发货','2024-08-23 13:06:15'),(62,13,120.20,'待支付','2024-08-23 13:08:30'),(63,18,135.50,'已支付','2024-08-23 13:10:45'),(64,6,145.20,'待支付','2024-08-23 13:13:00'),(65,11,130.20,'已发货','2024-08-23 13:15:15'),(66,19,125.50,'已支付','2024-08-23 13:17:30'),(67,5,135.20,'待支付','2024-08-23 13:19:45'),(68,20,140.50,'已发货','2024-08-23 13:22:00'),(69,17,120.20,'待支付','2024-08-23 13:24:15'),(70,4,135.50,'已支付','2024-08-23 13:26:30'),(71,10,145.20,'待支付','2024-08-23 13:28:45'),(72,13,130.20,'已发货','2024-08-23 13:31:00'),(73,18,125.50,'已支付','2024-08-23 13:33:15'),(74,6,135.20,'待支付','2024-08-23 13:35:30'),(75,11,140.50,'已发货','2024-08-23 13:37:45'),(76,19,120.20,'待支付','2024-08-23 13:40:00'),(77,5,135.50,'已支付','2024-08-23 13:42:15'),(78,20,145.20,'待支付','2024-08-23 13:44:30'),(79,17,130.20,'已发货','2024-08-23 13:46:45'),(80,4,125.50,'已支付','2024-08-23 13:49:00'),(81,10,135.20,'待支付','2024-08-23 13:51:15'),(82,13,140.50,'已发货','2024-08-23 13:53:30'),(83,18,120.20,'待支付','2024-08-23 13:55:45'),(84,6,135.50,'已支付','2024-08-23 13:58:00'),(85,11,145.20,'待支付','2024-08-23 14:00:15'),(86,19,130.20,'已发货','2024-08-23 14:02:30'),(87,5,125.50,'已支付','2024-08-23 14:04:45'),(88,20,135.20,'待支付','2024-08-23 14:07:00'),(89,17,140.50,'已发货','2024-08-23 14:09:15'),(90,4,120.20,'待支付','2024-08-23 14:11:30'),(91,10,135.50,'已支付','2024-08-23 14:13:45'),(92,13,145.20,'待支付','2024-08-23 14:16:00'),(93,18,130.20,'已发货','2024-08-23 14:18:15'),(94,6,125.50,'已支付','2024-08-23 14:20:30'),(95,11,135.20,'待支付','2024-08-23 14:22:45'),(96,19,140.50,'已发货','2024-08-23 14:25:00'),(97,5,120.20,'待支付','2024-08-23 14:27:15'),(98,20,135.50,'已支付','2024-08-23 14:29:30'),(99,17,145.20,'待支付','2024-08-23 14:31:45'),(100,4,130.20,'已发货','2024-08-23 14:34:00'),(101,10,125.50,'已支付','2024-08-23 14:36:15'),(102,13,135.20,'待支付','2024-08-23 14:38:30'),(103,18,140.50,'已发货','2024-08-23 14:40:45'),(104,16,120.20,'待支付','2024-08-23 14:43:00'),(105,12,135.50,'已支付','2024-08-23 14:45:15'),(106,3,145.20,'待支付','2024-08-23 14:47:30'),(107,8,130.20,'已发货','2024-08-23 14:49:45'),(108,19,125.50,'已支付','2024-08-23 14:52:00'),(109,6,135.20,'待支付','2024-08-23 14:54:15'),(110,14,140.50,'已发货','2024-08-23 14:56:30'),(111,10,120.20,'待支付','2024-08-23 14:58:45'),(112,13,135.50,'已支付','2024-08-23 15:01:00'),(113,18,145.20,'待支付','2024-08-23 15:03:15'),(114,6,130.20,'已发货','2024-08-23 15:05:30'),(115,11,125.50,'已支付','2024-08-23 15:07:45'),(116,19,135.20,'待支付','2024-08-23 15:10:00'),(117,5,140.50,'已发货','2024-08-23 15:12:15'),(118,20,120.20,'待支付','2024-08-23 15:14:30'),(119,17,135.50,'已支付','2024-08-23 15:16:45'),(120,4,145.20,'待支付','2024-08-23 15:19:00'),(121,10,130.20,'已发货','2024-08-23 15:21:15'),(122,13,125.50,'已支付','2024-08-23 15:23:30'),(123,18,135.20,'待支付','2024-08-23 15:25:45'),(124,6,140.50,'已发货','2024-08-23 15:28:00'),(125,11,120.20,'待支付','2024-08-23 15:30:15'),(126,19,135.50,'已支付','2024-08-23 15:32:30'),(127,5,145.20,'待支付','2024-08-23 15:34:45'),(128,20,130.20,'已发货','2024-08-23 15:37:00'),(129,17,125.50,'已支付','2024-08-23 15:39:15'),(130,4,135.20,'待支付','2024-08-23 15:41:30'),(131,10,140.50,'已发货','2024-08-23 15:43:45'),(132,13,120.20,'待支付','2024-08-23 15:46:00'),(133,18,135.50,'已支付','2024-08-23 15:48:15'),(134,6,145.20,'待支付','2024-08-23 15:50:30'),(135,11,130.20,'已发货','2024-08-23 15:52:45'),(136,19,125.50,'已支付','2024-08-23 15:55:00'),(137,5,135.20,'待支付','2024-08-23 15:57:15'),(138,20,140.50,'已发货','2024-08-23 15:59:30'),(139,17,120.20,'待支付','2024-08-23 16:01:45'),(140,4,135.50,'已支付','2024-08-23 16:04:00'),(141,10,145.20,'待支付','2024-08-23 16:06:15'),(142,13,130.20,'已发货','2024-08-23 16:08:30'),(143,18,125.50,'已支付','2024-08-23 16:10:45'),(144,6,135.20,'待支付','2024-08-23 16:13:00'),(145,11,140.50,'已发货','2024-08-23 16:15:15'),(146,19,120.20,'待支付','2024-08-23 16:17:30'),(147,5,135.50,'已支付','2024-08-23 16:19:45'),(148,20,145.20,'待支付','2024-08-23 16:22:00'),(149,17,130.20,'已发货','2024-08-23 16:24:15'),(150,4,125.50,'已支付','2024-08-23 16:26:30'),(151,10,135.20,'待支付','2024-08-23 16:28:45'),(152,13,140.50,'已发货','2024-08-23 16:31:00'),(153,18,120.20,'待支付','2024-08-23 16:33:15'),(154,6,135.50,'已支付','2024-08-23 16:35:30'),(155,11,145.20,'待支付','2024-08-23 16:37:45'),(156,19,130.20,'已发货','2024-08-23 16:40:00'),(157,5,125.50,'已支付','2024-08-23 16:42:15'),(158,20,135.20,'待支付','2024-08-23 16:44:30'),(159,17,140.50,'已发货','2024-08-23 16:46:45'),(160,4,120.20,'待支付','2024-08-23 16:49:00'),(161,10,135.50,'已支付','2024-08-23 16:51:15'),(162,13,145.20,'待支付','2024-08-23 16:53:30'),(163,18,130.20,'已发货','2024-08-23 16:55:45'),(164,6,125.50,'已支付','2024-08-23 16:58:00'),(165,11,135.20,'待支付','2024-08-23 17:00:15'),(166,19,140.50,'已发货','2024-08-23 17:02:30'),(167,5,120.20,'待支付','2024-08-23 17:04:45'),(168,20,135.50,'已支付','2024-08-23 17:07:00'),(169,17,145.20,'待支付','2024-08-23 17:09:15'),(170,4,130.20,'已发货','2024-08-23 17:11:30'),(171,10,125.50,'已支付','2024-08-23 17:13:45'),(172,13,135.20,'待支付','2024-08-23 17:16:00'),(173,18,140.50,'已发货','2024-08-23 17:18:15'),(174,6,120.20,'待支付','2024-08-23 17:20:30'),(175,11,135.50,'已支付','2024-08-23 17:22:45'),(176,19,145.20,'待支付','2024-08-23 17:25:00'),(177,5,130.20,'已发货','2024-08-23 17:27:15'),(178,20,125.50,'已支付','2024-08-23 17:29:30'),(179,17,135.20,'待支付','2024-08-23 17:31:45'),(180,4,140.50,'已发货','2024-08-23 17:34:00'),(181,10,120.20,'待支付','2024-08-23 17:36:15'),(182,13,135.50,'已支付','2024-08-23 17:38:30'),(183,18,145.20,'待支付','2024-08-23 17:40:45'),(184,6,130.20,'已发货','2024-08-23 17:43:00'),(185,11,125.50,'已支付','2024-08-23 17:45:15'),(186,19,135.20,'待支付','2024-08-23 17:47:30'),(187,5,140.50,'已发货','2024-08-23 17:49:45'),(188,20,120.20,'待支付','2024-08-23 17:52:00'),(189,17,135.50,'已支付','2024-08-23 17:54:15'),(190,4,145.20,'待支付','2024-08-23 17:56:30'),(191,10,130.20,'已发货','2024-08-23 17:58:45'),(192,13,125.50,'已支付','2024-08-23 18:01:00'),(193,18,135.20,'待支付','2024-08-23 18:03:15'),(194,6,140.50,'已发货','2024-08-23 18:05:30'),(195,11,120.20,'待支付','2024-08-23 18:07:45'),(196,19,135.50,'已支付','2024-08-23 18:10:00'),(197,5,145.20,'待支付','2024-08-23 18:12:15'),(198,20,130.20,'已发货','2024-08-23 18:14:30'),(199,17,125.50,'已支付','2024-08-23 18:16:45'),(200,4,135.20,'待支付','2024-08-23 18:19:00'),(201,10,140.50,'已发货','2024-08-23 18:21:15'),(202,13,120.20,'待支付','2024-08-23 18:23:30'),(203,18,135.50,'已支付','2024-08-23 18:25:45'),(204,6,145.20,'待支付','2024-08-23 18:28:00'),(205,11,130.20,'已发货','2024-08-23 18:30:15'),(206,19,125.50,'已支付','2024-08-23 18:32:30'),(207,5,135.20,'待支付','2024-08-23 18:34:45'),(208,20,140.50,'已发货','2024-08-23 18:37:00'),(209,17,120.20,'待支付','2024-08-23 18:39:15'),(210,4,135.50,'已支付','2024-08-23 18:41:30'),(211,10,145.20,'待支付','2024-08-23 18:43:45');
然后点击刷新,可以看到数据,说明TDSQL-C Mysql Serverless 数据库服务器准备完毕!
2.2.2、部署LLAMA模型
Llama模型起到了核心的桥梁作用,帮助将自然语言转换为数据库能够理解的结构化查询语言(SQL),其解析用户的自然语言输入,理解用户意图,并根据数据库的结构生成正确的 SQL 查询语句。
这里使用腾讯云高性能HAI应用服务,进入https://cloud.tencent.com/product/hai后,点击立即使用,新建服务器:
根据配置需求选择算力服务器,选择Llama3.1 8B模型,GPU选择基础性即可,然后硬盘选择默认的80GB就够用了:
创建成功后查看HAI算力服务器的llama对外端口(公网ip)并查看检查是否已经默认开放 6399端口。
至此,llama 大模型服务也准备完毕!
2.2.3、本地依赖安装
新建一个名为workspace文件夹,终端运行pip命令安装依赖包,请分别运行以下pip命令逐个安装:
pip install openai
pip install langchain
pip install langchain-core
pip install langchain-community
pip install mysql-connector-python
pip install streamlit
pip install plotly
pip install numpy
pip install pandas
pip install watchdog
pip install matplotlib
pip install kaleido
如果安装了anaconda的话,也可以新建一个虚拟环境,再用conda安装以上的环境。
安装成功后,所有开发环境准备完毕!
2.2.4、应用构建
新建名为 workspace 文件夹进行保存项目代码
在项目文件夹(workspace)中新建配置文件 config.yaml
在项目文件夹(workspace)中新建应用主文件 text2sql2plotly.py
其中,config.yaml的内容如下:
database:
db_user: root
db_password: Hjs1999526
db_host: sh-cynosdbmysql-grp-ma6b7b5i.sql.tencentcdb.com
db_port: 25380
db_name: shop
hai:
model: llama3.1:8b
base_url: http://101.35.239.9:6399
这里database 的配置详解:
db_user: 数据库账号,默认为 root db_password: 创建数据库时的密码
db_host: 数据库连接地址
db_port: 数据库公网端口
db_name:创建的数据库名称,如果按手册来默认是 shop
其中,db_host、db_port可以在集群列表中找到。
hai 配置详解:
model:使用的大模型
base_url:模型暴露的 api 地址,是公网 ip 和端口的组合,默认 llama端口是6399
其中,base_url可以在HAI的控制台-> 算力管理中找到。
text2sql2plotly.py的内容如下:
from langchain_community.utilities import SQLDatabase
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import yaml
import mysql.connector
from decimal import Decimal
import plotly.graph_objects as go
import plotly
import pkg_resources
import matplotlib
yaml_file_path = 'config.yaml'
with open(yaml_file_path, 'r') as file:
config_data = yaml.safe_load(file)
#获取所有的已安装的pip包
def get_piplist(p):
return [d.project_name for d in pkg_resources.working_set]
#获取llm用于提供AI交互
ollama = ChatOllama(model=config_data['hai']['model'],base_url=config_data['hai']['base_url'])
db_user = config_data['database']['db_user']
db_password = config_data['database']['db_password']
db_host = config_data['database']['db_host']
db_port= config_data['database']['db_port']
db_name = config_data['database']['db_name']
# 获得schema
def get_schema(db):
schema = mysql_db.get_table_info()
return schema
def getResult(content):
global mysql_db
# 数据库连接
mysql_db = SQLDatabase.from_uri(f"mysql+mysqlconnector://{db_user}:{db_password}@{db_host}:{db_port}/{db_name}")
# 获得 数据库中表的信息
#mysql_db_schema = mysql_db.get_table_info()
#print(mysql_db_schema)
template = """基于下面提供的数据库schema, 根据用户提供的要求编写sql查询语句,要求尽量使用最优sql,每次查询都是独立的问题,不要收到其他查询的干扰:
{schema}
Question: {question}
只返回sql语句,不要任何其他多余的字符,例如markdown的格式字符等:
如果有异常抛出不要显示出来
"""
prompt = ChatPromptTemplate.from_template(template)
text_2_sql_chain = (
RunnablePassthrough.assign(schema=get_schema)
| prompt
| ollama
| StrOutputParser()
)
# 执行langchain 获取操作的sql语句
sql = text_2_sql_chain.invoke({"question": content})
print(sql)
#连接数据库进行数据的获取
# 配置连接信息
conn = mysql.connector.connect(
host=db_host,
port=db_port,
user=db_user,
password=db_password,
database=db_name
)
# 创建游标对象
cursor = conn.cursor()
# 查询数据
cursor.execute(sql.strip("```").strip("```sql"))
info = cursor.fetchall()
# 打印结果
#for row in info:
#print(row)
# 关闭游标和数据库连接
cursor.close()
conn.close()
#根据数据生成对应的图表
print(info)
template2 = """
以下提供当前python环境已经安装的pip包集合:
{installed_packages};
请根据data提供的信息,生成是一个适合展示数据的plotly的图表的可执行代码,要求如下:
1.不要导入没有安装的pip包代码
2.如果存在多个数据类别,尽量使用柱状图,循环生成时图表中对不同数据请使用不同颜色区分,
3.图表要生成图片格式,保存在当前文件夹下即可,名称固定为:图表.png,
4.我需要您生成的代码是没有 Markdown 标记的,纯粹的编程语言代码。
5.生成的代码请注意将所有依赖包提前导入,
6.不要使用iplot等需要特定环境的代码
7.请注意数据之间是否可以转换,使用正确的代码
8.不需要生成注释
data:{data}
这是查询的sql语句与文本:
sql:{sql}
question:{question}
返回数据要求:
仅仅返回python代码,不要有额外的字符
"""
prompt2 = ChatPromptTemplate.from_template(template2)
data_2_code_chain = (
RunnablePassthrough.assign(installed_packages=get_piplist)
| prompt2
| ollama
| StrOutputParser()
)
# 执行langchain 获取操作的sql语句
code = data_2_code_chain.invoke({"data": info,"sql":sql,'question':content})
#删除数据两端可能存在的markdown格式
print(code.strip("```").strip("```python"))
exec(code.strip("```").strip("```python"))
return {"code":code,"SQL":sql,"Query":info}
# 构建展示页面
import streamlit
# 设置页面标题
streamlit.title('AI驱动的数据库TDSQL-C 电商可视化分析小助手')
# 设置对话框
content = streamlit.text_area('请输入想查询的信息', value='', max_chars=None)
# 提问按钮 # 设置点击操作
if streamlit.button('提问'):
#开始ai及langchain操作
if content:
#进行结果获取
result = getResult(content)
#显示操作结果
streamlit.write('AI生成的SQL语句:')
streamlit.write(result['SQL'])
streamlit.write('SQL语句的查询结果:')
streamlit.write(result['Query'])
streamlit.write('plotly图表代码:')
streamlit.write(result['code'])
# 显示图表内容(生成在getResult中)
streamlit.image('./图表.png', width=800)
这段代码主要使了LangChain库与MySQL数据库搭建了一个简单的 AI电商数据分析demo。首先,它从配置文件加载数据库连接信息,并定义了获取已安装pip包和数据库schema的函数。通过用户输入的查询内容,代码生成SQL语句,并执行该查询以获取数据。接着,它使用获取到的数据生成一个Plotly图表的代码,并将图表保存为PNG格式。最后,使用Streamlit构建用户界面,允许用户输入查询并展示生成的SQL、查询结果及图表。
2.3、运行效果
打开终端执行以下命令:streamlit run text2sql2plotly.py
开始执行:
这里让他查询每个用户账号的名称和长度,可以看到右侧成功读取了数据库返回了数据。并且在等待一段时间后,成功出图:
三、Text2SQL下的AI驱动
本篇实践中,我们基于Text2SQL原理,利用腾讯云的TDSQL-C MySQL Serverless和高性能应用服务HAI构建一个高效、可扩展的AI电商数据分析系统,其中:
- 数据存储:TDSQL-C MySQL Serverless提供弹性存储和高可用性,适合电商数据的大规模存储和查询需求。可以轻松管理用户、产品、订单等数据。
- 自然语言接口:使用Text2SQL技术,构建一个自然语言查询接口,用户可以通过简单的文本输入(如“显示过去一周的销售数据”)进行数据查询。
- AI模型集成:集成HAI等高性能AI服务,利用LLama模型解析用户查询,理解用户的自然语言输入,识别查询中的意图和关键词,并生成相应的SQL语句,让整个系统具有复杂查询的理解能力。
- 数据可视化:将查询结果转化为可视化图表,使用Plotly或其他图表库,方便用户进行数据分析。用户可以直接在界面中查看销售趋势、用户行为等。
最后,随着AI技术的发展,我觉得,TDSQL-C未来可能会通过精细化的资源管理和调度,帮助企业进一步降低运营成本,并进一步拓展到更多行业,如金融、医疗、物联网等,提供更加定制化的数据库解决方案。