Linux文件系统入门详解-总结大章

news2024/9/30 10:38:53

我们先看一张图:

 这张图大体上描述了 Linux 系统上,应用程序对磁盘上的文件进行读写时,从上到下经历了哪些事情。

这篇文章就以这张图为基础,介绍 Linux 在 I/O 上做了哪些事情。

文件系统

什么是文件系统

文件系统,本身是对存储设备上的文件,进行组织管理的机制。组织方式不同,就会形成不同的文件系统。比如常见的 Ext4、XFS、ZFS 以及网络文件系统 NFS 等等。

但是不同类型的文件系统标准和接口可能各有差异,我们在做应用开发的时候却很少关心系统调用以下的具体实现,大部分时候都是直接系统调用 open, read, write, close 来实现应用程序的功能,不会再去关注我们具体用了什么文件系统(UFS、XFS、Ext4、ZFS),磁盘是什么接口(IDE、SCSI,SAS,SATA 等),磁盘是什么存储介质(HDD、SSD)

应用开发者之所以这么爽,各种复杂细节都不用管直接调接口,是因为内核为我们做了大量的有技术含量的脏活累活。开始的那张图看到 Linux 在各种不同的文件系统之上,虚拟了一个 VFS,目的就是统一各种不同文件系统的标准和接口,让开发者可以使用相同的系统调用来使用不同的文件系统。

文件系统如何工作(VFS)

Linux 系统下的文件

在 Linux 中一切皆文件。不仅普通的文件和目录,就连块设备、套接字、管道等,也都要通过统一的文件系统来管理。

用 ls -l 命令看最前面的字符可以看到这个文件是什么类型

brw-r--r-- 1 root    root    1, 2 4月  25 11:03 bnod // 块设备文件
crw-r--r-- 1 root    root    1, 2 4月  25 11:04 cnod // 符号设备文件
drwxr-xr-x 2 wrn3552 wrn3552    6 4月  25 11:01 dir // 目录
-rw-r--r-- 1 wrn3552 wrn3552    0 4月  25 11:01 file // 普通文件
prw-r--r-- 1 root    root       0 4月  25 11:04 pipeline // 有名管道
srwxr-xr-x 1 root    root       0 4月  25 11:06 socket.sock // socket文件
lrwxrwxrwx 1 root    root       4 4月  25 11:04 softlink -> file // 软连接
-rw-r--r-- 2 wrn3552 wrn3552 0 4月  25 11:07 hardlink // 硬链接(本质也是普通文件)

Linux 文件系统设计了两个数据结构来管理这些不同种类的文件:

  • inode(index node):索引节点
  • dentry(directory entry):目录项

inode 和 dentry

inode

inode 是用来记录文件的 metadata,所谓 metadata 在 Wikipedia 上的描述是 data of data,其实指的就是文件的各种属性,比如 inode 编号、文件大小、访问权限、修改日期、数据的位置等。

wrn3552@novadev:~/playground$ stat file
  文件:file
  大小:0               块:0          IO 块:4096   普通空文件
设备:fe21h/65057d      Inode:32828       硬链接:2
权限:(0644/-rw-r--r--)  Uid:( 3041/ wrn3552)   Gid:( 3041/ wrn3552)
最近访问:2021-04-25 11:07:59.603745534 +0800
最近更改:2021-04-25 11:07:59.603745534 +0800
最近改动:2021-04-25 11:08:04.739848692 +0800
创建时间:-

inode 和文件一一对应,它跟文件内容一样,都会被持久化存储到磁盘中。所以,inode 同样占用磁盘空间,只不过相对于文件来说它大小固定且大小不算大。

dentry

dentry 用来记录文件的名字、inode 指针以及与其他 dentry 的关联关系。

wrn3552@novadev:~/playground$ tree
.
├── dir
│   └── file_in_dir
├── file
└── hardlink

  • 文件的名字:像 dir、file、hardlink、file_in_dir 这些名字是记录在 dentry 里的
  • inode 指针:就是指向这个文件的 inode
  • 与其他 dentry 的关联关系:其实就是每个文件的层级关系,哪个文件在哪个文件下面,构成了文件系统的目录结构

不同于 inode,dentry 是由内核维护的一个内存数据结构,所以通常也被叫做 dentry cache。

文件是如何存储在磁盘上的

 

 这里有张图解释了文件是如何存储在磁盘上的,首先,磁盘再进行文件系统格式化的时候,会分出来 3 个区:

  1. Superblock
  2. inode blocks
  3. data blocks

(其实还有 boot block,可能会包含一些 bootstrap 代码,在机器启动的时候被读到,这里忽略)其中 inode blocks 放的都是每个文件的 inode,data blocks 里放的是每个文件的内容数据。这里关注一下 superblock,它包含了整个文件系统的 metadata,具体有:

  1. inode/data block 总量、使用量、剩余量
  2. 文件系统的格式,属主等等各种属性

superblock 对于文件系统来说非常重要,如果 superblock 损坏了,文件系统就挂载不了了,相应的文件也没办法读写。既然 superblock 这么重要,那肯定不能只有一份,坏了就没了,它在系统中是有很多副本的,在 superblock 损坏的时候,可以使用 fsck(File System Check and repair)来恢复。回到上面的那张图,可以很清晰地看到文件的各种属性和文件的数据是如何存储在磁盘上的:

  1. dentry 里包含了文件的名字、目录结构、inode 指针
  2. inode 指针指向文件特定的 inode(存在 inode blocks 里)
  3. 每个 inode 又指向 data blocks 里具体的 logical block,这里的 logical block 存的就是文件具体的数据

这里解释一下什么是 logical block:

  1. 对于不同存储介质的磁盘,都有最小的读写单元
  • /sys/block/sda/queue/physical_block_size
  1. HDD 叫做 sector(扇区),SSD 叫做 page(页面)
  2. 对于 hdd 来说,每个 sector 大小 512Bytes
  3. 对于 SSD 来说每个 page 大小不等(和 cell 类型有关),经典的大小是 4KB
  4. 但是 Linux 觉得按照存储介质的最小读写单元来进行读写可能会有效率问题,所以支持在文件系统格式化的时候指定 block size 的大小,一般是把几个 physical_block 拼起来就成了一个 logical block
  • /sys/block/sda/queue/logical_block_size
  1. 理论上应该是 logical_block_size >= physical_block_size,但是有时候我们会看到 physical_block_size = 4K,logical_block_size = 512B 情况,其实这是因为磁盘上做了一层 512B 的仿真(emulation)(详情可参考 512e 和 4Kn)

 ZFS

这里简单介绍一个广泛应用的文件系统 ZFS,一些数据库应用也会用到 ZFS,先看一张 zfs 的层级结构图:

 这是一张从底向上的图:

  1. 将若干物理设备 disk 组成一个虚拟设备 vdev(同时,disk 也是一种 vdev)
  2. 再将若干个虚拟设备 vdev 加到一个 zpool 里
  3. 在 zpool 的基础上创建 zfs 并挂载(zvol 可以先不看,我们没有用到)

ZFS 的一些操作

创建 zpool

root@:~ # zpool create tank raidz /dev/ada1 /dev/ada2 /dev/ada3 raidz /dev/ada4 /dev/ada5 /dev/ada6
root@:~ # zpool list tank
NAME    SIZE  ALLOC   FREE  CKPOINT  EXPANDSZ   FRAG    CAP  DEDUP  HEALTH  ALTROOT
tank     11G   824K  11.0G        -         -     0%     0%  1.00x  ONLINE  -
root@:~ # zpool status tank
  pool: tank
 state: ONLINE
  scan: none requested
config:

        NAME        STATE     READ WRITE CKSUM
        tank        ONLINE       0     0     0
          raidz1-0  ONLINE       0     0     0
            ada1    ONLINE       0     0     0
            ada2    ONLINE       0     0     0
            ada3    ONLINE       0     0     0
          raidz1-1  ONLINE       0     0     0
            ada4    ONLINE       0     0     0
            ada5    ONLINE       0     0     0
            ada6    ONLINE       0     0     0
  • 创建了一个名为 tank 的 zpool
  • 这里的 raidz 同 RAID5

除了 raidz 还支持其他方案:

创建 zfs

root@:~ # zfs create -o mountpoint=/mnt/srev tank/srev
root@:~ # df -h tank/srev
Filesystem    Size    Used   Avail Capacity  Mounted on
tank/srev     7.1G    117K    7.1G     0%    /mnt/srev

  • 创建了一个 zfs,挂载到了 /mnt/srev
  • 这里没有指定 zfs 的 quota,创建的 zfs 大小即 zpool 大小

对 zfs 设置 quota

root@:~ # zfs set quota=1G tank/srev
root@:~ # df -h tank/srev
Filesystem    Size    Used   Avail Capacity  Mounted on
tank/srev     1.0G    118K    1.0G     0%    /mnt/srev

ZFS 特性

Pool 存储

上面的层级图和操作步骤可以看到 zfs 是基于 zpool 创建的,zpool 可以动态扩容意味着存储空间也可以动态扩容,而且可以创建多个文件系统,文件系统共享完整的 zpool 空间无需预分配。

事务文件系统

zfs 的写操作是事务的,意味着要么就没写,要么就写成功了,不会像其他文件系统那样,应用打开了文件,写入还没保存的时候断电,导致文件为空。zfs 保证写操作事务采用的是 copy on write 的方式:

  • 当 block B 有修改变成 B1 的时候,普通的文件系统会直接在 block B 原地进行修改变成 B1
  • zfs 则会再另一个地方写 B1,然后再在后面安全的时候对原来的 B 进行回收
  • 这样结果就不会出现 B 被打开而写失败的情况,大不了就是 B1 没写成功

这个特性让 zfs 在断电后不需要执行 fsck 来检查磁盘中是否存在写操作失败需要恢复的情况,大大提升了应用的可用性。

ARC 缓存

ZFS 中的 ARC(Adjustable Replacement Cache) 读缓存淘汰算法,是基于 IBM 的 ARP(Adaptive Replacement Cache) 演化而来。在一些文件系统中实现的标准 LRU 算法其实是有缺陷的:比如复制大文件之类的线性大量 I/O 操作,导致缓存失效率猛增(大量文件只读一次,放到内存不会被再读,坐等淘汰)。

另外,缓存可以根据时间来进行优化(LRU,最近最多使用),也可以根据频率进行优化(LFU,最近最常使用),这两种方法各有优劣,但是没办法适应所有场景。

ARC 的设计就是尝试在 LRU 和 LFU 之间找到一个平衡,根据当前的 I/O workload 来调整用 LRU 多一点还是 LFU 多一点。

ARC 定义了 4 个链表:

  1. LRU list:最近最多使用的页面,存具体数据
  2. LFU list:最近最常使用的页面,存具体数据
  3. Ghost list for LRU:最近从 LRU 表淘汰下来的页面信息,不存具体数据,只存页面信息
  4. Ghost list for LFU:最近从 LFU 表淘汰下来的页面信息,不存具体数据,只存页面信息

ARC 工作流程大致如下:

  1. LRU list 和 LFU list 填充和淘汰过程和标准算法一样
  2. 当一个页面从 LRU list 淘汰下来时,这个页面的信息会放到 LRU ghost 表中
  3. 如果这个页面一直没被再次引用到,那么这个页面的信息最终也会在 LRU ghost 表中被淘汰掉
  4. 如果这个页面在 LRU ghost 表中未被淘汰的时候,被再一次访问了,这时候会引起一次幽灵(phantom)命中
  5. phantom 命中的时候,事实上还是要把数据从磁盘第一次放缓存
  6. 但是这时候系统知道刚刚被 LRU 表淘汰的页面又被访问到了,说明 LRU list 太小了,这时它会把 LRU list 长度加一,LFU 长度减一
  7. 对于 LFU 的过程也与上述过程类似

磁盘类型

磁盘根据不同的分类方式,有各种不一样的类型。

磁盘的存储介质

根据磁盘的存储介质可以分两类(大家都很熟悉):

  • HDD(机械硬盘)
  • SSD(固态硬盘)

磁盘的接口

根据磁盘接口分类:

  • IDE (Integrated Drive Electronics)
  • SCSI (Small Computer System Interface)
  • SAS (Serial Attached SCSI)
  • SATA (Serial ATA)
  • ...

不同的接口,往往分配不同的设备名称。比如, IDE 设备会分配一个 hd 前缀的设备名,SCSI 和 SATA 设备会分配一个 sd 前缀的设备名。如果是多块同类型的磁盘,就会按照 a、b、c 等的字母顺序来编号。

Linux 对磁盘的管理

其实在 Linux 中,磁盘实际上是作为一个块设备来管理的,也就是以块为单位读写数据,并且支持随机读写。每个块设备都会被赋予两个设备号,分别是主、次设备号。主设备号用在驱动程序中,用来区分设备类型;而次设备号则是用来给多个同类设备编号。

g18-"299" on ~# ls -l /dev/sda*
brw-rw---- 1 root disk 8,  0 Apr 25 15:53 /dev/sda
brw-rw---- 1 root disk 8,  1 Apr 25 15:53 /dev/sda1
brw-rw---- 1 root disk 8, 10 Apr 25 15:53 /dev/sda10
brw-rw---- 1 root disk 8,  2 Apr 25 15:53 /dev/sda2
brw-rw---- 1 root disk 8,  5 Apr 25 15:53 /dev/sda5
brw-rw---- 1 root disk 8,  6 Apr 25 15:53 /dev/sda6
brw-rw---- 1 root disk 8,  7 Apr 25 15:53 /dev/sda7
brw-rw---- 1 root disk 8,  8 Apr 25 15:53 /dev/sda8
brw-rw---- 1 root disk 8,  9 Apr 25 15:53 /dev/sda9

  • 这些 sda 磁盘主设备号都是 8,表示它是一个 sd 类型的块设备
  • 次设备号 0-10 表示这些不同 sd 块设备的编号

Generic Block Layer

和 VFS 类似,为了对上层屏蔽不同块设备的差异,内核在文件系统和块设备之前抽象了一个 Generic Block Layer(通用块层),有时候一些人也会把下面的 I/O 调度层并到通用块层里表述。

这两层主要做两件事:

  1. 跟 VFS 的功能类似。向上,为文件系统和应用程序,提供访问块设备的标准接口;向下,把各种异构的磁盘设备抽象为统一的块设备,并提供统一框架来管理这些设备的驱动程序
  2. 对 I/O 请求进行调度,通过重新排序、合并等方式,提高磁盘读写效率

下图是一个完整的 I/O 栈全景图:

可以看到中间的 Block Layer 其实就是 Generic Block Layer,在图中可以看到 Block Layer 的 I/O 调度分为两类,分别表示单队列和多队列的调度:

  • I/O scheduler
  • blkmq

I/O 调度

老版本的内核里只支持单队列的 I/O scheduler,在 3.16 版本的内核开始支持多队列 blkmq,这里介绍几种经典的 I/O 调度策略。

单队列 I/O scheduler:

  • NOOP:事实上是个 FIFO 的队列,只做基本的请求合并
  • CFQ:Completely Fair Queueing,完全公平调度器,给每个进程维护一个 I/O 调度队列,按照时间片来均匀分布每个进程 I/O 请求,
  • DeadLine:为读和写请求创建不同的 I/O 队列,确保达到 deadline 的请求被优先处理

多队列 blkmq:

  • bfq:Budget Fair Queueing,也是公平调度器,不过不是按时间片来分配,而是按请求的扇区数量(带宽)
  • kyber:维护两个队列(同步/读、异步/写),同时严格限制发到这两个队列的请求数以保证相应时间
  • mq-deadline:多队列版本的 deadline
  • 具体各种 I/O 调度策略可以参考 IOSchedulers
  • 关于 blkmq 可以参考 Linux Multi-Queue Block IO Queueing Mechanism (blk-mq) Details
  • 多队列调度可以参考 Block layer introduction part 2: the request layer

性能指标

一般来说 I/O 性能指标有这几个:

  • 使用率:ioutil,指的是磁盘处理 I/O 的时间百分比,ioutil 只看有没有 I/O 请求,不看 I/O 请求的大小。ioutil 越高表示一直都有 I/O 请求,不代表磁盘无法响应新的 I/O 请求
  • IOPS:每秒的 I/O 请求数
  • 吞吐量/带宽:每秒的 I/O 请求大小,通常是 MB/s 或者 GB/s 为单位
  • 响应时间:I/O 请求发出到收到响应的时间
  • 饱和度:指的是磁盘处理 I/O 的繁忙程度。这个指标比较玄学,没有直接的数据可以表示,一般是根据平均队列请求长度或者响应时间跟基准测试的结果进行对比来估算

(在做基准测试时,还会分顺序/随机、读/写进行排列组合分别去测 IOPS 和带宽)

上面的指标除了饱和度外,其他都可以在监控系统中看到。Linux 也提供了一些命令来输出不同维度的 I/O 状态:

  • iostat -d -x:看各个设备的 I/O 状态,数据来源 /proc/diskstats
  • pidstat -d:看近处的 I/O
  • iotop:类似 top,按 I/O 大小对进程排序

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2179405.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

EKF学习笔记

扩展卡尔曼滤波,也就是EKF,常用于在动态系统中对状态的估计。比如,在机器人领域,EKF则常常用于对状态(位置,方向)的估计,也就是我们常说的数据融合,结合运动模型和观测数…

vscode使用yarn 启动vue项目记录

第一次启动yarn项目,这个是公司的老项目,遇到了点问题,记录下首先是我一般使用的是npm命令,所以没有安装yarn vscode安装yarn vscode进入到该项目文件夹下,输入命令:npm install -g yarn 安装成功后&…

河南人社厅:注册满两年可按条件认定副高

河南省工程系列建筑专业中高级职称 申报评审标准 总则 一、为培养造就高素质、社会化的工程建设领域专业技术人才队伍,充分发挥工程建设领域专业技术人才在科技发展和经济建设中的作用,推动技术创新、科技成果转化和实现高新技术产业化,根据…

CSS给一行按钮统一设置间隔

使用css的&#xff0b;&#xff08;相邻兄弟选择器&#xff09;&#xff0c;找到指定元素后面的相邻元素。 <div class"btn-list"><button class"btn">按钮1</button><button class"btn">按钮2</button><butto…

Arthas memory(查看 JVM 内存信息)

文章目录 二、命令列表2.1 jvm相关命令2.1.11 memory&#xff08;查看 JVM 内存信息&#xff09;举例1&#xff1a;查看 JVM 内存信息 本人其他相关文章链接 二、命令列表 2.1 jvm相关命令 2.1.11 memory&#xff08;查看 JVM 内存信息&#xff09; 基本用法&#xff1a; mem…

第一讲-环境安装

PyCharm安装 官网下载 https://www.jetbrains.com/pycharm/ 点击Download跳转到下载界面,会有专业版跟社区版两个选择,专业版需要购买,可自行在淘宝上买个激活码。一般开发社区版够用了。 这是专业版: 这是社区版:

WinRAR技巧:如何给多个压缩包设置同一个密码

RAR压缩包是大家经常使用的文件&#xff0c;并且可以进行加密&#xff0c;也是一种文件加密方式&#xff0c;那么当你有很多文件都需要压缩加密&#xff0c;b并且想要设置同一个密码&#xff0c;防止以后忘记密码&#xff0c;该如何高效的完成这个工作呢&#xff1f;今天分享如…

vue2中使用tailwindCss 详细教程

1、先看官方文档&#xff1a;https://www.tailwindcss.cn/ 2、先安装&#xff1a;npm install -D tailwindcss ---------------通过 npm 安装 tailwindcss&#xff0c;然后创建你自己的 create your tailwind.config.js 配置文件。 npm install -D tailwindcss 3、初始化文件…

解决Java调用通义接口出现依赖爆红与API-key找不到(日常小记)

1.依赖dashscope-sdk-java爆红 解决方法&#xff1a; <dependency><groupId>com.alibaba</groupId><artifactId>dashscope-sdk-java</artifactId><exclusions><exclusion><groupId>org.slf4j</groupId><artifactId…

跑批系统设计

需求分析 将大批量的数据&#xff0c;从一个地方&#xff0c;迁移到另外一个地方&#xff0c;如何处理 主要的涉及到的问题 亿级数据怎么存怎么防止重复调度怎么做到负载均衡同一个节点&#xff0c;任务怎么并行如何动态调整并发度机器节点挂了怎么办 概要设计 数据存储 …

springboot整合MybatisPlus+MySQL

上一篇&#xff1a;springboot整合sentinel和对feign熔断降级 文章目录 一、准备二、主要工作三、具体步骤3.1 准备数据库环境3.20 pre引入依赖3.2 引入依赖3.3 bootstrap.yml配置mybatisplus3.40 pre引入service、mapper3.4 引入实体类、service、mapper 四、测试目录结构 五…

数据结构 ——— 单链表oj题:移除链表中所有 val 的元素

目录 题目要求 手搓简易单链表 代码实现 题目要求 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回新的头节点 手搓简易单链表 在实现以上逻辑函数前&#xff0c;要先手搓一个单链表出来&#xff…

iOS--App启动过程及优化

前言 App启动是用户对于一个app的第一印象&#xff0c;因此如何使用户在最短的时间打开进入app显得格外重要。启动优化因此成为了App调优至关重要的一项。 只有具体了解了App的启动过程&#xff0c;我们才能对其进行优化。 App启动过程 App启动分为冷启动和热启动 热启动&…

公司申请商标注册需要什么材料

申请商标注册的&#xff0c;应当向商标局提交《商标注册申请书》及其它文件&#xff0c;具体要求是&#xff1a; 1、申请人必须按一类商品一件商标一份申请的原则&#xff0c;提交《商标注册申请书》一份。也即一份申请书上填报的商品或服务只能限定在《商标注册用商品和服务国…

Debian 配置 Python 开发与运行环境

配置 Python 开发与运行环境。 1.3.1. Debian下的安装与配置 Debian 是一个致力于自由软件开发并宣扬自由软件基金会理念的自愿者组织。 Debian 计划创建于 1993 年。当时&#xff0c;Ian Murdock 发出一份公开信&#xff0c; 邀请软件开发者们参与构建一个基于较新的 Linux …

Java8/9/10/11新特性

目录 一、 Lambda表达式二、函数式(Functional)接口三、方法引用与构造器引用3.1、方法引用3.2 构造器引用和数组引用3.2.1 构造器引用3.2.2 数组引用 四、 强大的Stream API4.1 Stream API说明4.2 Stream 的操作三个步骤4.3 创建 Stream方式4.4 、Stream 的中间操作4.4.1 筛选…

Python | Leetcode Python题解之第447题回旋镖的数量

题目&#xff1a; 题解&#xff1a; class Solution:def numberOfBoomerangs(self, points: List[List[int]]) -> int:ans 0for p in points:cnt defaultdict(int)for q in points:dis (p[0] - q[0]) * (p[0] - q[0]) (p[1] - q[1]) * (p[1] - q[1])cnt[dis] 1for m i…

使用DolphinScheduler调度实现sqoop增量导入时遇到 Caused by:Class QueryResult not found 错误解决

解决方法&#xff1a; 拷贝一个 QueryResult.jar 到 sqoop 的 lib 下 【临时解决方案】 报错信息中有一个相关路径&#xff01;拷贝该路径下的QueryResult.jar到sqoop的lib下&#xff1a; cp /tmp/sqoop-root/compile/dc8e6e7d48be670d676323bf76fd9fe9/QueryResult.jar /op…

通信工程师笔记

第一章 1.支撑网是使业务网正常运行,增强网络功能,提供全网服务质量以满足用户要求的网络。 2.常见的有线通信线路包括&#xff08;1&#xff09;双绞线&#xff0c;&#xff08;2&#xff09;同轴电缆&#xff0c;&#xff08;3&#xff09;光纤等&#xff0c;无线通信线路是…

过渡到内存安全语言:挑战和注意事项

开放源代码安全基金会 ( OpenSSF )总经理 Omkhar Arasaratnam 讨论了内存安全编程语言的演变及其为应对 C 和 C 等语言的局限性而出现的现象。 内存安全问题已存在五十多年&#xff0c;它要求程序员从内存管理任务中抽离出来。 Java、Rust、Python 和 JavaScript 等现代语言通…